Solve for x
x = \frac{\sqrt{1249} + 40}{13} \approx 5.795476469
x=\frac{40-\sqrt{1249}}{13}\approx 0.358369685
Graph
Share
Copied to clipboard
169x^{2}-1040x+351=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1040\right)±\sqrt{\left(-1040\right)^{2}-4\times 169\times 351}}{2\times 169}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 169 for a, -1040 for b, and 351 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1040\right)±\sqrt{1081600-4\times 169\times 351}}{2\times 169}
Square -1040.
x=\frac{-\left(-1040\right)±\sqrt{1081600-676\times 351}}{2\times 169}
Multiply -4 times 169.
x=\frac{-\left(-1040\right)±\sqrt{1081600-237276}}{2\times 169}
Multiply -676 times 351.
x=\frac{-\left(-1040\right)±\sqrt{844324}}{2\times 169}
Add 1081600 to -237276.
x=\frac{-\left(-1040\right)±26\sqrt{1249}}{2\times 169}
Take the square root of 844324.
x=\frac{1040±26\sqrt{1249}}{2\times 169}
The opposite of -1040 is 1040.
x=\frac{1040±26\sqrt{1249}}{338}
Multiply 2 times 169.
x=\frac{26\sqrt{1249}+1040}{338}
Now solve the equation x=\frac{1040±26\sqrt{1249}}{338} when ± is plus. Add 1040 to 26\sqrt{1249}.
x=\frac{\sqrt{1249}+40}{13}
Divide 1040+26\sqrt{1249} by 338.
x=\frac{1040-26\sqrt{1249}}{338}
Now solve the equation x=\frac{1040±26\sqrt{1249}}{338} when ± is minus. Subtract 26\sqrt{1249} from 1040.
x=\frac{40-\sqrt{1249}}{13}
Divide 1040-26\sqrt{1249} by 338.
x=\frac{\sqrt{1249}+40}{13} x=\frac{40-\sqrt{1249}}{13}
The equation is now solved.
169x^{2}-1040x+351=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
169x^{2}-1040x+351-351=-351
Subtract 351 from both sides of the equation.
169x^{2}-1040x=-351
Subtracting 351 from itself leaves 0.
\frac{169x^{2}-1040x}{169}=-\frac{351}{169}
Divide both sides by 169.
x^{2}+\left(-\frac{1040}{169}\right)x=-\frac{351}{169}
Dividing by 169 undoes the multiplication by 169.
x^{2}-\frac{80}{13}x=-\frac{351}{169}
Reduce the fraction \frac{-1040}{169} to lowest terms by extracting and canceling out 13.
x^{2}-\frac{80}{13}x=-\frac{27}{13}
Reduce the fraction \frac{-351}{169} to lowest terms by extracting and canceling out 13.
x^{2}-\frac{80}{13}x+\left(-\frac{40}{13}\right)^{2}=-\frac{27}{13}+\left(-\frac{40}{13}\right)^{2}
Divide -\frac{80}{13}, the coefficient of the x term, by 2 to get -\frac{40}{13}. Then add the square of -\frac{40}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{80}{13}x+\frac{1600}{169}=-\frac{27}{13}+\frac{1600}{169}
Square -\frac{40}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{80}{13}x+\frac{1600}{169}=\frac{1249}{169}
Add -\frac{27}{13} to \frac{1600}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{40}{13}\right)^{2}=\frac{1249}{169}
Factor x^{2}-\frac{80}{13}x+\frac{1600}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{40}{13}\right)^{2}}=\sqrt{\frac{1249}{169}}
Take the square root of both sides of the equation.
x-\frac{40}{13}=\frac{\sqrt{1249}}{13} x-\frac{40}{13}=-\frac{\sqrt{1249}}{13}
Simplify.
x=\frac{\sqrt{1249}+40}{13} x=\frac{40-\sqrt{1249}}{13}
Add \frac{40}{13} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}