Evaluate
\frac{169}{45}\approx 3.755555556
Factor
\frac{13 ^ {2}}{3 ^ {2} \cdot 5} = 3\frac{34}{45} = 3.7555555555555555
Share
Copied to clipboard
\begin{array}{l}\phantom{45)}\phantom{1}\\45\overline{)169}\\\end{array}
Use the 1^{st} digit 1 from dividend 169
\begin{array}{l}\phantom{45)}0\phantom{2}\\45\overline{)169}\\\end{array}
Since 1 is less than 45, use the next digit 6 from dividend 169 and add 0 to the quotient
\begin{array}{l}\phantom{45)}0\phantom{3}\\45\overline{)169}\\\end{array}
Use the 2^{nd} digit 6 from dividend 169
\begin{array}{l}\phantom{45)}00\phantom{4}\\45\overline{)169}\\\end{array}
Since 16 is less than 45, use the next digit 9 from dividend 169 and add 0 to the quotient
\begin{array}{l}\phantom{45)}00\phantom{5}\\45\overline{)169}\\\end{array}
Use the 3^{rd} digit 9 from dividend 169
\begin{array}{l}\phantom{45)}003\phantom{6}\\45\overline{)169}\\\phantom{45)}\underline{\phantom{}135\phantom{}}\\\phantom{45)9}34\\\end{array}
Find closest multiple of 45 to 169. We see that 3 \times 45 = 135 is the nearest. Now subtract 135 from 169 to get reminder 34. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }34
Since 34 is less than 45, stop the division. The reminder is 34. The topmost line 003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}