Evaluate
\frac{169}{24}\approx 7.041666667
Factor
\frac{13 ^ {2}}{2 ^ {3} \cdot 3} = 7\frac{1}{24} = 7.041666666666667
Share
Copied to clipboard
\begin{array}{l}\phantom{24)}\phantom{1}\\24\overline{)169}\\\end{array}
Use the 1^{st} digit 1 from dividend 169
\begin{array}{l}\phantom{24)}0\phantom{2}\\24\overline{)169}\\\end{array}
Since 1 is less than 24, use the next digit 6 from dividend 169 and add 0 to the quotient
\begin{array}{l}\phantom{24)}0\phantom{3}\\24\overline{)169}\\\end{array}
Use the 2^{nd} digit 6 from dividend 169
\begin{array}{l}\phantom{24)}00\phantom{4}\\24\overline{)169}\\\end{array}
Since 16 is less than 24, use the next digit 9 from dividend 169 and add 0 to the quotient
\begin{array}{l}\phantom{24)}00\phantom{5}\\24\overline{)169}\\\end{array}
Use the 3^{rd} digit 9 from dividend 169
\begin{array}{l}\phantom{24)}007\phantom{6}\\24\overline{)169}\\\phantom{24)}\underline{\phantom{}168\phantom{}}\\\phantom{24)99}1\\\end{array}
Find closest multiple of 24 to 169. We see that 7 \times 24 = 168 is the nearest. Now subtract 168 from 169 to get reminder 1. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }1
Since 1 is less than 24, stop the division. The reminder is 1. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}