Evaluate
\frac{168}{19}\approx 8.842105263
Factor
\frac{2 ^ {3} \cdot 3 \cdot 7}{19} = 8\frac{16}{19} = 8.842105263157896
Share
Copied to clipboard
\begin{array}{l}\phantom{19)}\phantom{1}\\19\overline{)168}\\\end{array}
Use the 1^{st} digit 1 from dividend 168
\begin{array}{l}\phantom{19)}0\phantom{2}\\19\overline{)168}\\\end{array}
Since 1 is less than 19, use the next digit 6 from dividend 168 and add 0 to the quotient
\begin{array}{l}\phantom{19)}0\phantom{3}\\19\overline{)168}\\\end{array}
Use the 2^{nd} digit 6 from dividend 168
\begin{array}{l}\phantom{19)}00\phantom{4}\\19\overline{)168}\\\end{array}
Since 16 is less than 19, use the next digit 8 from dividend 168 and add 0 to the quotient
\begin{array}{l}\phantom{19)}00\phantom{5}\\19\overline{)168}\\\end{array}
Use the 3^{rd} digit 8 from dividend 168
\begin{array}{l}\phantom{19)}008\phantom{6}\\19\overline{)168}\\\phantom{19)}\underline{\phantom{}152\phantom{}}\\\phantom{19)9}16\\\end{array}
Find closest multiple of 19 to 168. We see that 8 \times 19 = 152 is the nearest. Now subtract 152 from 168 to get reminder 16. Add 8 to quotient.
\text{Quotient: }8 \text{Reminder: }16
Since 16 is less than 19, stop the division. The reminder is 16. The topmost line 008 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}