Evaluate
32768
Factor
2^{15}
Share
Copied to clipboard
\begin{array}{l}\phantom{512)}\phantom{1}\\512\overline{)16777216}\\\end{array}
Use the 1^{st} digit 1 from dividend 16777216
\begin{array}{l}\phantom{512)}0\phantom{2}\\512\overline{)16777216}\\\end{array}
Since 1 is less than 512, use the next digit 6 from dividend 16777216 and add 0 to the quotient
\begin{array}{l}\phantom{512)}0\phantom{3}\\512\overline{)16777216}\\\end{array}
Use the 2^{nd} digit 6 from dividend 16777216
\begin{array}{l}\phantom{512)}00\phantom{4}\\512\overline{)16777216}\\\end{array}
Since 16 is less than 512, use the next digit 7 from dividend 16777216 and add 0 to the quotient
\begin{array}{l}\phantom{512)}00\phantom{5}\\512\overline{)16777216}\\\end{array}
Use the 3^{rd} digit 7 from dividend 16777216
\begin{array}{l}\phantom{512)}000\phantom{6}\\512\overline{)16777216}\\\end{array}
Since 167 is less than 512, use the next digit 7 from dividend 16777216 and add 0 to the quotient
\begin{array}{l}\phantom{512)}000\phantom{7}\\512\overline{)16777216}\\\end{array}
Use the 4^{th} digit 7 from dividend 16777216
\begin{array}{l}\phantom{512)}0003\phantom{8}\\512\overline{)16777216}\\\phantom{512)}\underline{\phantom{}1536\phantom{9999}}\\\phantom{512)9}141\\\end{array}
Find closest multiple of 512 to 1677. We see that 3 \times 512 = 1536 is the nearest. Now subtract 1536 from 1677 to get reminder 141. Add 3 to quotient.
\begin{array}{l}\phantom{512)}0003\phantom{9}\\512\overline{)16777216}\\\phantom{512)}\underline{\phantom{}1536\phantom{9999}}\\\phantom{512)9}1417\\\end{array}
Use the 5^{th} digit 7 from dividend 16777216
\begin{array}{l}\phantom{512)}00032\phantom{10}\\512\overline{)16777216}\\\phantom{512)}\underline{\phantom{}1536\phantom{9999}}\\\phantom{512)9}1417\\\phantom{512)}\underline{\phantom{9}1024\phantom{999}}\\\phantom{512)99}393\\\end{array}
Find closest multiple of 512 to 1417. We see that 2 \times 512 = 1024 is the nearest. Now subtract 1024 from 1417 to get reminder 393. Add 2 to quotient.
\begin{array}{l}\phantom{512)}00032\phantom{11}\\512\overline{)16777216}\\\phantom{512)}\underline{\phantom{}1536\phantom{9999}}\\\phantom{512)9}1417\\\phantom{512)}\underline{\phantom{9}1024\phantom{999}}\\\phantom{512)99}3932\\\end{array}
Use the 6^{th} digit 2 from dividend 16777216
\begin{array}{l}\phantom{512)}000327\phantom{12}\\512\overline{)16777216}\\\phantom{512)}\underline{\phantom{}1536\phantom{9999}}\\\phantom{512)9}1417\\\phantom{512)}\underline{\phantom{9}1024\phantom{999}}\\\phantom{512)99}3932\\\phantom{512)}\underline{\phantom{99}3584\phantom{99}}\\\phantom{512)999}348\\\end{array}
Find closest multiple of 512 to 3932. We see that 7 \times 512 = 3584 is the nearest. Now subtract 3584 from 3932 to get reminder 348. Add 7 to quotient.
\begin{array}{l}\phantom{512)}000327\phantom{13}\\512\overline{)16777216}\\\phantom{512)}\underline{\phantom{}1536\phantom{9999}}\\\phantom{512)9}1417\\\phantom{512)}\underline{\phantom{9}1024\phantom{999}}\\\phantom{512)99}3932\\\phantom{512)}\underline{\phantom{99}3584\phantom{99}}\\\phantom{512)999}3481\\\end{array}
Use the 7^{th} digit 1 from dividend 16777216
\begin{array}{l}\phantom{512)}0003276\phantom{14}\\512\overline{)16777216}\\\phantom{512)}\underline{\phantom{}1536\phantom{9999}}\\\phantom{512)9}1417\\\phantom{512)}\underline{\phantom{9}1024\phantom{999}}\\\phantom{512)99}3932\\\phantom{512)}\underline{\phantom{99}3584\phantom{99}}\\\phantom{512)999}3481\\\phantom{512)}\underline{\phantom{999}3072\phantom{9}}\\\phantom{512)9999}409\\\end{array}
Find closest multiple of 512 to 3481. We see that 6 \times 512 = 3072 is the nearest. Now subtract 3072 from 3481 to get reminder 409. Add 6 to quotient.
\begin{array}{l}\phantom{512)}0003276\phantom{15}\\512\overline{)16777216}\\\phantom{512)}\underline{\phantom{}1536\phantom{9999}}\\\phantom{512)9}1417\\\phantom{512)}\underline{\phantom{9}1024\phantom{999}}\\\phantom{512)99}3932\\\phantom{512)}\underline{\phantom{99}3584\phantom{99}}\\\phantom{512)999}3481\\\phantom{512)}\underline{\phantom{999}3072\phantom{9}}\\\phantom{512)9999}4096\\\end{array}
Use the 8^{th} digit 6 from dividend 16777216
\begin{array}{l}\phantom{512)}00032768\phantom{16}\\512\overline{)16777216}\\\phantom{512)}\underline{\phantom{}1536\phantom{9999}}\\\phantom{512)9}1417\\\phantom{512)}\underline{\phantom{9}1024\phantom{999}}\\\phantom{512)99}3932\\\phantom{512)}\underline{\phantom{99}3584\phantom{99}}\\\phantom{512)999}3481\\\phantom{512)}\underline{\phantom{999}3072\phantom{9}}\\\phantom{512)9999}4096\\\phantom{512)}\underline{\phantom{9999}4096\phantom{}}\\\phantom{512)99999999}0\\\end{array}
Find closest multiple of 512 to 4096. We see that 8 \times 512 = 4096 is the nearest. Now subtract 4096 from 4096 to get reminder 0. Add 8 to quotient.
\text{Quotient: }32768 \text{Reminder: }0
Since 0 is less than 512, stop the division. The reminder is 0. The topmost line 00032768 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 32768.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}