Evaluate
\frac{83}{70}\approx 1.185714286
Factor
\frac{83}{2 \cdot 5 \cdot 7} = 1\frac{13}{70} = 1.1857142857142857
Share
Copied to clipboard
\begin{array}{l}\phantom{1400)}\phantom{1}\\1400\overline{)1660}\\\end{array}
Use the 1^{st} digit 1 from dividend 1660
\begin{array}{l}\phantom{1400)}0\phantom{2}\\1400\overline{)1660}\\\end{array}
Since 1 is less than 1400, use the next digit 6 from dividend 1660 and add 0 to the quotient
\begin{array}{l}\phantom{1400)}0\phantom{3}\\1400\overline{)1660}\\\end{array}
Use the 2^{nd} digit 6 from dividend 1660
\begin{array}{l}\phantom{1400)}00\phantom{4}\\1400\overline{)1660}\\\end{array}
Since 16 is less than 1400, use the next digit 6 from dividend 1660 and add 0 to the quotient
\begin{array}{l}\phantom{1400)}00\phantom{5}\\1400\overline{)1660}\\\end{array}
Use the 3^{rd} digit 6 from dividend 1660
\begin{array}{l}\phantom{1400)}000\phantom{6}\\1400\overline{)1660}\\\end{array}
Since 166 is less than 1400, use the next digit 0 from dividend 1660 and add 0 to the quotient
\begin{array}{l}\phantom{1400)}000\phantom{7}\\1400\overline{)1660}\\\end{array}
Use the 4^{th} digit 0 from dividend 1660
\begin{array}{l}\phantom{1400)}0001\phantom{8}\\1400\overline{)1660}\\\phantom{1400)}\underline{\phantom{}1400\phantom{}}\\\phantom{1400)9}260\\\end{array}
Find closest multiple of 1400 to 1660. We see that 1 \times 1400 = 1400 is the nearest. Now subtract 1400 from 1660 to get reminder 260. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }260
Since 260 is less than 1400, stop the division. The reminder is 260. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}