Factor
3\left(5-x\right)\left(x+11\right)
Evaluate
3\left(5-x\right)\left(x+11\right)
Graph
Share
Copied to clipboard
3\left(55-x^{2}-6x\right)
Factor out 3.
-x^{2}-6x+55
Consider 55-x^{2}-6x. Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-6 ab=-55=-55
Factor the expression by grouping. First, the expression needs to be rewritten as -x^{2}+ax+bx+55. To find a and b, set up a system to be solved.
1,-55 5,-11
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -55.
1-55=-54 5-11=-6
Calculate the sum for each pair.
a=5 b=-11
The solution is the pair that gives sum -6.
\left(-x^{2}+5x\right)+\left(-11x+55\right)
Rewrite -x^{2}-6x+55 as \left(-x^{2}+5x\right)+\left(-11x+55\right).
x\left(-x+5\right)+11\left(-x+5\right)
Factor out x in the first and 11 in the second group.
\left(-x+5\right)\left(x+11\right)
Factor out common term -x+5 by using distributive property.
3\left(-x+5\right)\left(x+11\right)
Rewrite the complete factored expression.
-3x^{2}-18x+165=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\left(-3\right)\times 165}}{2\left(-3\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-18\right)±\sqrt{324-4\left(-3\right)\times 165}}{2\left(-3\right)}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324+12\times 165}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-18\right)±\sqrt{324+1980}}{2\left(-3\right)}
Multiply 12 times 165.
x=\frac{-\left(-18\right)±\sqrt{2304}}{2\left(-3\right)}
Add 324 to 1980.
x=\frac{-\left(-18\right)±48}{2\left(-3\right)}
Take the square root of 2304.
x=\frac{18±48}{2\left(-3\right)}
The opposite of -18 is 18.
x=\frac{18±48}{-6}
Multiply 2 times -3.
x=\frac{66}{-6}
Now solve the equation x=\frac{18±48}{-6} when ± is plus. Add 18 to 48.
x=-11
Divide 66 by -6.
x=-\frac{30}{-6}
Now solve the equation x=\frac{18±48}{-6} when ± is minus. Subtract 48 from 18.
x=5
Divide -30 by -6.
-3x^{2}-18x+165=-3\left(x-\left(-11\right)\right)\left(x-5\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -11 for x_{1} and 5 for x_{2}.
-3x^{2}-18x+165=-3\left(x+11\right)\left(x-5\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}