1635 \times 8 \% - x = 90 x
Solve for x
x = \frac{654}{455} = 1\frac{199}{455} \approx 1.437362637
Graph
Share
Copied to clipboard
1635\times \frac{2}{25}-x=90x
Reduce the fraction \frac{8}{100} to lowest terms by extracting and canceling out 4.
\frac{1635\times 2}{25}-x=90x
Express 1635\times \frac{2}{25} as a single fraction.
\frac{3270}{25}-x=90x
Multiply 1635 and 2 to get 3270.
\frac{654}{5}-x=90x
Reduce the fraction \frac{3270}{25} to lowest terms by extracting and canceling out 5.
\frac{654}{5}-x-90x=0
Subtract 90x from both sides.
\frac{654}{5}-91x=0
Combine -x and -90x to get -91x.
-91x=-\frac{654}{5}
Subtract \frac{654}{5} from both sides. Anything subtracted from zero gives its negation.
x=\frac{-\frac{654}{5}}{-91}
Divide both sides by -91.
x=\frac{-654}{5\left(-91\right)}
Express \frac{-\frac{654}{5}}{-91} as a single fraction.
x=\frac{-654}{-455}
Multiply 5 and -91 to get -455.
x=\frac{654}{455}
Fraction \frac{-654}{-455} can be simplified to \frac{654}{455} by removing the negative sign from both the numerator and the denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}