Solve for x
x=\frac{\sqrt{8986809}}{3250}+\frac{81}{250}\approx 1.246400213
x=-\frac{\sqrt{8986809}}{3250}+\frac{81}{250}\approx -0.598400213
Graph
Share
Copied to clipboard
1625x^{2}-1053x-1212=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-1053\right)±\sqrt{\left(-1053\right)^{2}-4\times 1625\left(-1212\right)}}{2\times 1625}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1625 for a, -1053 for b, and -1212 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1053\right)±\sqrt{1108809-4\times 1625\left(-1212\right)}}{2\times 1625}
Square -1053.
x=\frac{-\left(-1053\right)±\sqrt{1108809-6500\left(-1212\right)}}{2\times 1625}
Multiply -4 times 1625.
x=\frac{-\left(-1053\right)±\sqrt{1108809+7878000}}{2\times 1625}
Multiply -6500 times -1212.
x=\frac{-\left(-1053\right)±\sqrt{8986809}}{2\times 1625}
Add 1108809 to 7878000.
x=\frac{1053±\sqrt{8986809}}{2\times 1625}
The opposite of -1053 is 1053.
x=\frac{1053±\sqrt{8986809}}{3250}
Multiply 2 times 1625.
x=\frac{\sqrt{8986809}+1053}{3250}
Now solve the equation x=\frac{1053±\sqrt{8986809}}{3250} when ± is plus. Add 1053 to \sqrt{8986809}.
x=\frac{\sqrt{8986809}}{3250}+\frac{81}{250}
Divide 1053+\sqrt{8986809} by 3250.
x=\frac{1053-\sqrt{8986809}}{3250}
Now solve the equation x=\frac{1053±\sqrt{8986809}}{3250} when ± is minus. Subtract \sqrt{8986809} from 1053.
x=-\frac{\sqrt{8986809}}{3250}+\frac{81}{250}
Divide 1053-\sqrt{8986809} by 3250.
x=\frac{\sqrt{8986809}}{3250}+\frac{81}{250} x=-\frac{\sqrt{8986809}}{3250}+\frac{81}{250}
The equation is now solved.
1625x^{2}-1053x-1212=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
1625x^{2}-1053x-1212-\left(-1212\right)=-\left(-1212\right)
Add 1212 to both sides of the equation.
1625x^{2}-1053x=-\left(-1212\right)
Subtracting -1212 from itself leaves 0.
1625x^{2}-1053x=1212
Subtract -1212 from 0.
\frac{1625x^{2}-1053x}{1625}=\frac{1212}{1625}
Divide both sides by 1625.
x^{2}+\left(-\frac{1053}{1625}\right)x=\frac{1212}{1625}
Dividing by 1625 undoes the multiplication by 1625.
x^{2}-\frac{81}{125}x=\frac{1212}{1625}
Reduce the fraction \frac{-1053}{1625} to lowest terms by extracting and canceling out 13.
x^{2}-\frac{81}{125}x+\left(-\frac{81}{250}\right)^{2}=\frac{1212}{1625}+\left(-\frac{81}{250}\right)^{2}
Divide -\frac{81}{125}, the coefficient of the x term, by 2 to get -\frac{81}{250}. Then add the square of -\frac{81}{250} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{81}{125}x+\frac{6561}{62500}=\frac{1212}{1625}+\frac{6561}{62500}
Square -\frac{81}{250} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{81}{125}x+\frac{6561}{62500}=\frac{691293}{812500}
Add \frac{1212}{1625} to \frac{6561}{62500} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{81}{250}\right)^{2}=\frac{691293}{812500}
Factor x^{2}-\frac{81}{125}x+\frac{6561}{62500}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{81}{250}\right)^{2}}=\sqrt{\frac{691293}{812500}}
Take the square root of both sides of the equation.
x-\frac{81}{250}=\frac{\sqrt{8986809}}{3250} x-\frac{81}{250}=-\frac{\sqrt{8986809}}{3250}
Simplify.
x=\frac{\sqrt{8986809}}{3250}+\frac{81}{250} x=-\frac{\sqrt{8986809}}{3250}+\frac{81}{250}
Add \frac{81}{250} to both sides of the equation.
x ^ 2 -\frac{81}{125}x -\frac{1212}{1625} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 1625
r + s = \frac{81}{125} rs = -\frac{1212}{1625}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{81}{250} - u s = \frac{81}{250} + u
Two numbers r and s sum up to \frac{81}{125} exactly when the average of the two numbers is \frac{1}{2}*\frac{81}{125} = \frac{81}{250}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{81}{250} - u) (\frac{81}{250} + u) = -\frac{1212}{1625}
To solve for unknown quantity u, substitute these in the product equation rs = -\frac{1212}{1625}
\frac{6561}{62500} - u^2 = -\frac{1212}{1625}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -\frac{1212}{1625}-\frac{6561}{62500} = \frac{691293}{812500}
Simplify the expression by subtracting \frac{6561}{62500} on both sides
u^2 = -\frac{691293}{812500} u = \pm\sqrt{-\frac{691293}{812500}} = \pm \frac{\sqrt{691293}}{\sqrt{812500}}i
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{81}{250} - \frac{\sqrt{691293}}{\sqrt{812500}}i = -0.598 s = \frac{81}{250} + \frac{\sqrt{691293}}{\sqrt{812500}}i = 1.246
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}