Evaluate
9
Factor
3^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{180)}\phantom{1}\\180\overline{)1620}\\\end{array}
Use the 1^{st} digit 1 from dividend 1620
\begin{array}{l}\phantom{180)}0\phantom{2}\\180\overline{)1620}\\\end{array}
Since 1 is less than 180, use the next digit 6 from dividend 1620 and add 0 to the quotient
\begin{array}{l}\phantom{180)}0\phantom{3}\\180\overline{)1620}\\\end{array}
Use the 2^{nd} digit 6 from dividend 1620
\begin{array}{l}\phantom{180)}00\phantom{4}\\180\overline{)1620}\\\end{array}
Since 16 is less than 180, use the next digit 2 from dividend 1620 and add 0 to the quotient
\begin{array}{l}\phantom{180)}00\phantom{5}\\180\overline{)1620}\\\end{array}
Use the 3^{rd} digit 2 from dividend 1620
\begin{array}{l}\phantom{180)}000\phantom{6}\\180\overline{)1620}\\\end{array}
Since 162 is less than 180, use the next digit 0 from dividend 1620 and add 0 to the quotient
\begin{array}{l}\phantom{180)}000\phantom{7}\\180\overline{)1620}\\\end{array}
Use the 4^{th} digit 0 from dividend 1620
\begin{array}{l}\phantom{180)}0009\phantom{8}\\180\overline{)1620}\\\phantom{180)}\underline{\phantom{}1620\phantom{}}\\\phantom{180)9999}0\\\end{array}
Find closest multiple of 180 to 1620. We see that 9 \times 180 = 1620 is the nearest. Now subtract 1620 from 1620 to get reminder 0. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }0
Since 0 is less than 180, stop the division. The reminder is 0. The topmost line 0009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}