Evaluate
\frac{32035}{49}\approx 653.775510204
Factor
\frac{5 \cdot 43 \cdot 149}{7 ^ {2}} = 653\frac{38}{49} = 653.7755102040817
Share
Copied to clipboard
\begin{array}{l}\phantom{245)}\phantom{1}\\245\overline{)160175}\\\end{array}
Use the 1^{st} digit 1 from dividend 160175
\begin{array}{l}\phantom{245)}0\phantom{2}\\245\overline{)160175}\\\end{array}
Since 1 is less than 245, use the next digit 6 from dividend 160175 and add 0 to the quotient
\begin{array}{l}\phantom{245)}0\phantom{3}\\245\overline{)160175}\\\end{array}
Use the 2^{nd} digit 6 from dividend 160175
\begin{array}{l}\phantom{245)}00\phantom{4}\\245\overline{)160175}\\\end{array}
Since 16 is less than 245, use the next digit 0 from dividend 160175 and add 0 to the quotient
\begin{array}{l}\phantom{245)}00\phantom{5}\\245\overline{)160175}\\\end{array}
Use the 3^{rd} digit 0 from dividend 160175
\begin{array}{l}\phantom{245)}000\phantom{6}\\245\overline{)160175}\\\end{array}
Since 160 is less than 245, use the next digit 1 from dividend 160175 and add 0 to the quotient
\begin{array}{l}\phantom{245)}000\phantom{7}\\245\overline{)160175}\\\end{array}
Use the 4^{th} digit 1 from dividend 160175
\begin{array}{l}\phantom{245)}0006\phantom{8}\\245\overline{)160175}\\\phantom{245)}\underline{\phantom{}1470\phantom{99}}\\\phantom{245)9}131\\\end{array}
Find closest multiple of 245 to 1601. We see that 6 \times 245 = 1470 is the nearest. Now subtract 1470 from 1601 to get reminder 131. Add 6 to quotient.
\begin{array}{l}\phantom{245)}0006\phantom{9}\\245\overline{)160175}\\\phantom{245)}\underline{\phantom{}1470\phantom{99}}\\\phantom{245)9}1317\\\end{array}
Use the 5^{th} digit 7 from dividend 160175
\begin{array}{l}\phantom{245)}00065\phantom{10}\\245\overline{)160175}\\\phantom{245)}\underline{\phantom{}1470\phantom{99}}\\\phantom{245)9}1317\\\phantom{245)}\underline{\phantom{9}1225\phantom{9}}\\\phantom{245)999}92\\\end{array}
Find closest multiple of 245 to 1317. We see that 5 \times 245 = 1225 is the nearest. Now subtract 1225 from 1317 to get reminder 92. Add 5 to quotient.
\begin{array}{l}\phantom{245)}00065\phantom{11}\\245\overline{)160175}\\\phantom{245)}\underline{\phantom{}1470\phantom{99}}\\\phantom{245)9}1317\\\phantom{245)}\underline{\phantom{9}1225\phantom{9}}\\\phantom{245)999}925\\\end{array}
Use the 6^{th} digit 5 from dividend 160175
\begin{array}{l}\phantom{245)}000653\phantom{12}\\245\overline{)160175}\\\phantom{245)}\underline{\phantom{}1470\phantom{99}}\\\phantom{245)9}1317\\\phantom{245)}\underline{\phantom{9}1225\phantom{9}}\\\phantom{245)999}925\\\phantom{245)}\underline{\phantom{999}735\phantom{}}\\\phantom{245)999}190\\\end{array}
Find closest multiple of 245 to 925. We see that 3 \times 245 = 735 is the nearest. Now subtract 735 from 925 to get reminder 190. Add 3 to quotient.
\text{Quotient: }653 \text{Reminder: }190
Since 190 is less than 245, stop the division. The reminder is 190. The topmost line 000653 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 653.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}