Evaluate
4
Factor
2^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{40)}\phantom{1}\\40\overline{)160}\\\end{array}
Use the 1^{st} digit 1 from dividend 160
\begin{array}{l}\phantom{40)}0\phantom{2}\\40\overline{)160}\\\end{array}
Since 1 is less than 40, use the next digit 6 from dividend 160 and add 0 to the quotient
\begin{array}{l}\phantom{40)}0\phantom{3}\\40\overline{)160}\\\end{array}
Use the 2^{nd} digit 6 from dividend 160
\begin{array}{l}\phantom{40)}00\phantom{4}\\40\overline{)160}\\\end{array}
Since 16 is less than 40, use the next digit 0 from dividend 160 and add 0 to the quotient
\begin{array}{l}\phantom{40)}00\phantom{5}\\40\overline{)160}\\\end{array}
Use the 3^{rd} digit 0 from dividend 160
\begin{array}{l}\phantom{40)}004\phantom{6}\\40\overline{)160}\\\phantom{40)}\underline{\phantom{}160\phantom{}}\\\phantom{40)999}0\\\end{array}
Find closest multiple of 40 to 160. We see that 4 \times 40 = 160 is the nearest. Now subtract 160 from 160 to get reminder 0. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }0
Since 0 is less than 40, stop the division. The reminder is 0. The topmost line 004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}