Evaluate
\frac{160}{21}\approx 7.619047619
Factor
\frac{2 ^ {5} \cdot 5}{3 \cdot 7} = 7\frac{13}{21} = 7.619047619047619
Share
Copied to clipboard
\begin{array}{l}\phantom{21)}\phantom{1}\\21\overline{)160}\\\end{array}
Use the 1^{st} digit 1 from dividend 160
\begin{array}{l}\phantom{21)}0\phantom{2}\\21\overline{)160}\\\end{array}
Since 1 is less than 21, use the next digit 6 from dividend 160 and add 0 to the quotient
\begin{array}{l}\phantom{21)}0\phantom{3}\\21\overline{)160}\\\end{array}
Use the 2^{nd} digit 6 from dividend 160
\begin{array}{l}\phantom{21)}00\phantom{4}\\21\overline{)160}\\\end{array}
Since 16 is less than 21, use the next digit 0 from dividend 160 and add 0 to the quotient
\begin{array}{l}\phantom{21)}00\phantom{5}\\21\overline{)160}\\\end{array}
Use the 3^{rd} digit 0 from dividend 160
\begin{array}{l}\phantom{21)}007\phantom{6}\\21\overline{)160}\\\phantom{21)}\underline{\phantom{}147\phantom{}}\\\phantom{21)9}13\\\end{array}
Find closest multiple of 21 to 160. We see that 7 \times 21 = 147 is the nearest. Now subtract 147 from 160 to get reminder 13. Add 7 to quotient.
\text{Quotient: }7 \text{Reminder: }13
Since 13 is less than 21, stop the division. The reminder is 13. The topmost line 007 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}