Evaluate
\frac{931}{6}\approx 155.166666667
Share
Copied to clipboard
160+4\times 0-\frac{\sqrt{2}}{3}\cos(45)-2\cos(60)-\frac{7}{2}
Get the value of \cos(90) from trigonometric values table.
160+0-\frac{\sqrt{2}}{3}\cos(45)-2\cos(60)-\frac{7}{2}
Multiply 4 and 0 to get 0.
160-\frac{\sqrt{2}}{3}\cos(45)-2\cos(60)-\frac{7}{2}
Add 160 and 0 to get 160.
160-\frac{\sqrt{2}}{3}\times \frac{\sqrt{2}}{2}-2\cos(60)-\frac{7}{2}
Get the value of \cos(45) from trigonometric values table.
160-\frac{\sqrt{2}\sqrt{2}}{3\times 2}-2\cos(60)-\frac{7}{2}
Multiply \frac{\sqrt{2}}{3} times \frac{\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
160-\frac{2}{3\times 2}-2\cos(60)-\frac{7}{2}
Multiply \sqrt{2} and \sqrt{2} to get 2.
160-\frac{2}{6}-2\cos(60)-\frac{7}{2}
Multiply 3 and 2 to get 6.
160-\frac{1}{3}-2\cos(60)-\frac{7}{2}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{479}{3}-2\cos(60)-\frac{7}{2}
Subtract \frac{1}{3} from 160 to get \frac{479}{3}.
\frac{479}{3}-2\times \frac{1}{2}-\frac{7}{2}
Get the value of \cos(60) from trigonometric values table.
\frac{479}{3}-1-\frac{7}{2}
Multiply 2 and \frac{1}{2} to get 1.
\frac{476}{3}-\frac{7}{2}
Subtract 1 from \frac{479}{3} to get \frac{476}{3}.
\frac{931}{6}
Subtract \frac{7}{2} from \frac{476}{3} to get \frac{931}{6}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}