Solve for T
T=-\frac{t}{2}+\frac{7}{4}
Solve for t
t=\frac{7}{2}-2T
Share
Copied to clipboard
9+4T=16-2t
Swap sides so that all variable terms are on the left hand side.
4T=16-2t-9
Subtract 9 from both sides.
4T=7-2t
Subtract 9 from 16 to get 7.
\frac{4T}{4}=\frac{7-2t}{4}
Divide both sides by 4.
T=\frac{7-2t}{4}
Dividing by 4 undoes the multiplication by 4.
T=-\frac{t}{2}+\frac{7}{4}
Divide 7-2t by 4.
-2t=9+4T-16
Subtract 16 from both sides.
-2t=-7+4T
Subtract 16 from 9 to get -7.
-2t=4T-7
The equation is in standard form.
\frac{-2t}{-2}=\frac{4T-7}{-2}
Divide both sides by -2.
t=\frac{4T-7}{-2}
Dividing by -2 undoes the multiplication by -2.
t=\frac{7}{2}-2T
Divide -7+4T by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}