Evaluate
-\frac{5\left(8-t\right)^{2}}{8}+16
Expand
-\frac{5t^{2}}{8}+10t-24
Share
Copied to clipboard
16-\frac{1}{2}\left(8-t\right)\left(-\frac{5}{4}t+10\right)
Multiply -1 and \frac{1}{2} to get -\frac{1}{2}.
16+\left(-\frac{1}{2}\times 8-\frac{1}{2}\left(-1\right)t\right)\left(-\frac{5}{4}t+10\right)
Use the distributive property to multiply -\frac{1}{2} by 8-t.
16+\left(\frac{-8}{2}-\frac{1}{2}\left(-1\right)t\right)\left(-\frac{5}{4}t+10\right)
Express -\frac{1}{2}\times 8 as a single fraction.
16+\left(-4-\frac{1}{2}\left(-1\right)t\right)\left(-\frac{5}{4}t+10\right)
Divide -8 by 2 to get -4.
16+\left(-4+\frac{1}{2}t\right)\left(-\frac{5}{4}t+10\right)
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
16-4\left(-\frac{5}{4}\right)t-40+\frac{1}{2}t\left(-\frac{5}{4}\right)t+\frac{1}{2}t\times 10
Apply the distributive property by multiplying each term of -4+\frac{1}{2}t by each term of -\frac{5}{4}t+10.
16-4\left(-\frac{5}{4}\right)t-40+\frac{1}{2}t^{2}\left(-\frac{5}{4}\right)+\frac{1}{2}t\times 10
Multiply t and t to get t^{2}.
16+5t-40+\frac{1}{2}t^{2}\left(-\frac{5}{4}\right)+\frac{1}{2}t\times 10
Multiply -4 times -\frac{5}{4}.
16+5t-40+\frac{1\left(-5\right)}{2\times 4}t^{2}+\frac{1}{2}t\times 10
Multiply \frac{1}{2} times -\frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
16+5t-40+\frac{-5}{8}t^{2}+\frac{1}{2}t\times 10
Do the multiplications in the fraction \frac{1\left(-5\right)}{2\times 4}.
16+5t-40-\frac{5}{8}t^{2}+\frac{1}{2}t\times 10
Fraction \frac{-5}{8} can be rewritten as -\frac{5}{8} by extracting the negative sign.
16+5t-40-\frac{5}{8}t^{2}+\frac{10}{2}t
Multiply \frac{1}{2} and 10 to get \frac{10}{2}.
16+5t-40-\frac{5}{8}t^{2}+5t
Divide 10 by 2 to get 5.
16+10t-40-\frac{5}{8}t^{2}
Combine 5t and 5t to get 10t.
-24+10t-\frac{5}{8}t^{2}
Subtract 40 from 16 to get -24.
16-\frac{1}{2}\left(8-t\right)\left(-\frac{5}{4}t+10\right)
Multiply -1 and \frac{1}{2} to get -\frac{1}{2}.
16+\left(-\frac{1}{2}\times 8-\frac{1}{2}\left(-1\right)t\right)\left(-\frac{5}{4}t+10\right)
Use the distributive property to multiply -\frac{1}{2} by 8-t.
16+\left(\frac{-8}{2}-\frac{1}{2}\left(-1\right)t\right)\left(-\frac{5}{4}t+10\right)
Express -\frac{1}{2}\times 8 as a single fraction.
16+\left(-4-\frac{1}{2}\left(-1\right)t\right)\left(-\frac{5}{4}t+10\right)
Divide -8 by 2 to get -4.
16+\left(-4+\frac{1}{2}t\right)\left(-\frac{5}{4}t+10\right)
Multiply -\frac{1}{2} and -1 to get \frac{1}{2}.
16-4\left(-\frac{5}{4}\right)t-40+\frac{1}{2}t\left(-\frac{5}{4}\right)t+\frac{1}{2}t\times 10
Apply the distributive property by multiplying each term of -4+\frac{1}{2}t by each term of -\frac{5}{4}t+10.
16-4\left(-\frac{5}{4}\right)t-40+\frac{1}{2}t^{2}\left(-\frac{5}{4}\right)+\frac{1}{2}t\times 10
Multiply t and t to get t^{2}.
16+5t-40+\frac{1}{2}t^{2}\left(-\frac{5}{4}\right)+\frac{1}{2}t\times 10
Multiply -4 times -\frac{5}{4}.
16+5t-40+\frac{1\left(-5\right)}{2\times 4}t^{2}+\frac{1}{2}t\times 10
Multiply \frac{1}{2} times -\frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
16+5t-40+\frac{-5}{8}t^{2}+\frac{1}{2}t\times 10
Do the multiplications in the fraction \frac{1\left(-5\right)}{2\times 4}.
16+5t-40-\frac{5}{8}t^{2}+\frac{1}{2}t\times 10
Fraction \frac{-5}{8} can be rewritten as -\frac{5}{8} by extracting the negative sign.
16+5t-40-\frac{5}{8}t^{2}+\frac{10}{2}t
Multiply \frac{1}{2} and 10 to get \frac{10}{2}.
16+5t-40-\frac{5}{8}t^{2}+5t
Divide 10 by 2 to get 5.
16+10t-40-\frac{5}{8}t^{2}
Combine 5t and 5t to get 10t.
-24+10t-\frac{5}{8}t^{2}
Subtract 40 from 16 to get -24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}