Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16+x^{2}=2\left(4-x\right)^{2}
Multiply 4-x and 4-x to get \left(4-x\right)^{2}.
16+x^{2}=2\left(16-8x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
16+x^{2}=32-16x+2x^{2}
Use the distributive property to multiply 2 by 16-8x+x^{2}.
16+x^{2}-32=-16x+2x^{2}
Subtract 32 from both sides.
-16+x^{2}=-16x+2x^{2}
Subtract 32 from 16 to get -16.
-16+x^{2}+16x=2x^{2}
Add 16x to both sides.
-16+x^{2}+16x-2x^{2}=0
Subtract 2x^{2} from both sides.
-16-x^{2}+16x=0
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+16x-16=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-16±\sqrt{16^{2}-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 16 for b, and -16 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-16±\sqrt{256-4\left(-1\right)\left(-16\right)}}{2\left(-1\right)}
Square 16.
x=\frac{-16±\sqrt{256+4\left(-16\right)}}{2\left(-1\right)}
Multiply -4 times -1.
x=\frac{-16±\sqrt{256-64}}{2\left(-1\right)}
Multiply 4 times -16.
x=\frac{-16±\sqrt{192}}{2\left(-1\right)}
Add 256 to -64.
x=\frac{-16±8\sqrt{3}}{2\left(-1\right)}
Take the square root of 192.
x=\frac{-16±8\sqrt{3}}{-2}
Multiply 2 times -1.
x=\frac{8\sqrt{3}-16}{-2}
Now solve the equation x=\frac{-16±8\sqrt{3}}{-2} when ± is plus. Add -16 to 8\sqrt{3}.
x=8-4\sqrt{3}
Divide -16+8\sqrt{3} by -2.
x=\frac{-8\sqrt{3}-16}{-2}
Now solve the equation x=\frac{-16±8\sqrt{3}}{-2} when ± is minus. Subtract 8\sqrt{3} from -16.
x=4\sqrt{3}+8
Divide -16-8\sqrt{3} by -2.
x=8-4\sqrt{3} x=4\sqrt{3}+8
The equation is now solved.
16+x^{2}=2\left(4-x\right)^{2}
Multiply 4-x and 4-x to get \left(4-x\right)^{2}.
16+x^{2}=2\left(16-8x+x^{2}\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(4-x\right)^{2}.
16+x^{2}=32-16x+2x^{2}
Use the distributive property to multiply 2 by 16-8x+x^{2}.
16+x^{2}+16x=32+2x^{2}
Add 16x to both sides.
16+x^{2}+16x-2x^{2}=32
Subtract 2x^{2} from both sides.
16-x^{2}+16x=32
Combine x^{2} and -2x^{2} to get -x^{2}.
-x^{2}+16x=32-16
Subtract 16 from both sides.
-x^{2}+16x=16
Subtract 16 from 32 to get 16.
\frac{-x^{2}+16x}{-1}=\frac{16}{-1}
Divide both sides by -1.
x^{2}+\frac{16}{-1}x=\frac{16}{-1}
Dividing by -1 undoes the multiplication by -1.
x^{2}-16x=\frac{16}{-1}
Divide 16 by -1.
x^{2}-16x=-16
Divide 16 by -1.
x^{2}-16x+\left(-8\right)^{2}=-16+\left(-8\right)^{2}
Divide -16, the coefficient of the x term, by 2 to get -8. Then add the square of -8 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-16x+64=-16+64
Square -8.
x^{2}-16x+64=48
Add -16 to 64.
\left(x-8\right)^{2}=48
Factor x^{2}-16x+64. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-8\right)^{2}}=\sqrt{48}
Take the square root of both sides of the equation.
x-8=4\sqrt{3} x-8=-4\sqrt{3}
Simplify.
x=4\sqrt{3}+8 x=8-4\sqrt{3}
Add 8 to both sides of the equation.