Factor
16\left(y-\frac{-\sqrt{1249}-15}{32}\right)\left(y-\frac{\sqrt{1249}-15}{32}\right)
Evaluate
16y^{2}+15y-16
Graph
Share
Copied to clipboard
16y^{2}+15y-16=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-15±\sqrt{15^{2}-4\times 16\left(-16\right)}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-15±\sqrt{225-4\times 16\left(-16\right)}}{2\times 16}
Square 15.
y=\frac{-15±\sqrt{225-64\left(-16\right)}}{2\times 16}
Multiply -4 times 16.
y=\frac{-15±\sqrt{225+1024}}{2\times 16}
Multiply -64 times -16.
y=\frac{-15±\sqrt{1249}}{2\times 16}
Add 225 to 1024.
y=\frac{-15±\sqrt{1249}}{32}
Multiply 2 times 16.
y=\frac{\sqrt{1249}-15}{32}
Now solve the equation y=\frac{-15±\sqrt{1249}}{32} when ± is plus. Add -15 to \sqrt{1249}.
y=\frac{-\sqrt{1249}-15}{32}
Now solve the equation y=\frac{-15±\sqrt{1249}}{32} when ± is minus. Subtract \sqrt{1249} from -15.
16y^{2}+15y-16=16\left(y-\frac{\sqrt{1249}-15}{32}\right)\left(y-\frac{-\sqrt{1249}-15}{32}\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{-15+\sqrt{1249}}{32} for x_{1} and \frac{-15-\sqrt{1249}}{32} for x_{2}.
x ^ 2 +\frac{15}{16}x -1 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 16
r + s = -\frac{15}{16} rs = -1
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = -\frac{15}{32} - u s = -\frac{15}{32} + u
Two numbers r and s sum up to -\frac{15}{16} exactly when the average of the two numbers is \frac{1}{2}*-\frac{15}{16} = -\frac{15}{32}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(-\frac{15}{32} - u) (-\frac{15}{32} + u) = -1
To solve for unknown quantity u, substitute these in the product equation rs = -1
\frac{225}{1024} - u^2 = -1
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -1-\frac{225}{1024} = -\frac{1249}{1024}
Simplify the expression by subtracting \frac{225}{1024} on both sides
u^2 = \frac{1249}{1024} u = \pm\sqrt{\frac{1249}{1024}} = \pm \frac{\sqrt{1249}}{32}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =-\frac{15}{32} - \frac{\sqrt{1249}}{32} = -1.573 s = -\frac{15}{32} + \frac{\sqrt{1249}}{32} = 0.636
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}