Solve for x (complex solution)
x=\frac{\sqrt[3]{9\sqrt{41}-53}-\sqrt[3]{9\sqrt{41}+53}-2}{6}\approx -0.85567287
x=1
x=\frac{\left(1+\sqrt{3}i\right)\left(2\sqrt[3]{9\sqrt{41}+53}+\sqrt[3]{9\sqrt{41}-53}-2+\sqrt{3}\sqrt[3]{9\sqrt{41}-53}i+2\sqrt{3}i\right)}{24}\approx -0.072163565+0.933432167i
x=\frac{\left(-\sqrt{3}i+1\right)\left(-\sqrt{3}\sqrt[3]{9\sqrt{41}-53}i+2\sqrt[3]{9\sqrt{41}+53}+\sqrt[3]{9\sqrt{41}-53}-2\sqrt{3}i-2\right)}{24}\approx -0.072163565-0.933432167i
x=0
Graph
Share
Copied to clipboard
16x^{6}-4x^{3}=12x^{2}
Subtract 4x^{3} from both sides.
16x^{6}-4x^{3}-12x^{2}=0
Subtract 12x^{2} from both sides.
16t^{2}-4t-12=0
Substitute t for x^{3}.
t=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 16\left(-12\right)}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 16 for a, -4 for b, and -12 for c in the quadratic formula.
t=\frac{4±28}{32}
Do the calculations.
t=1 t=-\frac{3}{4}
Solve the equation t=\frac{4±28}{32} when ± is plus and when ± is minus.
x=\frac{-1+\sqrt{3}i}{2} x=\frac{-\sqrt{3}i-1}{2} x=1 x=-\frac{\sqrt[3]{3}\times 4^{\frac{2}{3}}ie^{\frac{\pi i}{6}}}{4} x=-\frac{\sqrt[3]{3}\times 4^{\frac{2}{3}}}{4} x=\frac{\sqrt[3]{3}\times 4^{\frac{2}{3}}e^{\frac{\pi i}{3}}}{4}
Since x=t^{3}, the solutions are obtained by solving the equation for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}