Solve for x
x = \frac{5 \sqrt{101} + 55}{8} \approx 13.156172263
x=\frac{55-5\sqrt{101}}{8}\approx 0.593827737
Graph
Share
Copied to clipboard
16x^{2}-220x+125=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-220\right)±\sqrt{\left(-220\right)^{2}-4\times 16\times 125}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -220 for b, and 125 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-220\right)±\sqrt{48400-4\times 16\times 125}}{2\times 16}
Square -220.
x=\frac{-\left(-220\right)±\sqrt{48400-64\times 125}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-220\right)±\sqrt{48400-8000}}{2\times 16}
Multiply -64 times 125.
x=\frac{-\left(-220\right)±\sqrt{40400}}{2\times 16}
Add 48400 to -8000.
x=\frac{-\left(-220\right)±20\sqrt{101}}{2\times 16}
Take the square root of 40400.
x=\frac{220±20\sqrt{101}}{2\times 16}
The opposite of -220 is 220.
x=\frac{220±20\sqrt{101}}{32}
Multiply 2 times 16.
x=\frac{20\sqrt{101}+220}{32}
Now solve the equation x=\frac{220±20\sqrt{101}}{32} when ± is plus. Add 220 to 20\sqrt{101}.
x=\frac{5\sqrt{101}+55}{8}
Divide 220+20\sqrt{101} by 32.
x=\frac{220-20\sqrt{101}}{32}
Now solve the equation x=\frac{220±20\sqrt{101}}{32} when ± is minus. Subtract 20\sqrt{101} from 220.
x=\frac{55-5\sqrt{101}}{8}
Divide 220-20\sqrt{101} by 32.
x=\frac{5\sqrt{101}+55}{8} x=\frac{55-5\sqrt{101}}{8}
The equation is now solved.
16x^{2}-220x+125=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
16x^{2}-220x+125-125=-125
Subtract 125 from both sides of the equation.
16x^{2}-220x=-125
Subtracting 125 from itself leaves 0.
\frac{16x^{2}-220x}{16}=-\frac{125}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{220}{16}\right)x=-\frac{125}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{55}{4}x=-\frac{125}{16}
Reduce the fraction \frac{-220}{16} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{55}{4}x+\left(-\frac{55}{8}\right)^{2}=-\frac{125}{16}+\left(-\frac{55}{8}\right)^{2}
Divide -\frac{55}{4}, the coefficient of the x term, by 2 to get -\frac{55}{8}. Then add the square of -\frac{55}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{55}{4}x+\frac{3025}{64}=-\frac{125}{16}+\frac{3025}{64}
Square -\frac{55}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{55}{4}x+\frac{3025}{64}=\frac{2525}{64}
Add -\frac{125}{16} to \frac{3025}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{55}{8}\right)^{2}=\frac{2525}{64}
Factor x^{2}-\frac{55}{4}x+\frac{3025}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{55}{8}\right)^{2}}=\sqrt{\frac{2525}{64}}
Take the square root of both sides of the equation.
x-\frac{55}{8}=\frac{5\sqrt{101}}{8} x-\frac{55}{8}=-\frac{5\sqrt{101}}{8}
Simplify.
x=\frac{5\sqrt{101}+55}{8} x=\frac{55-5\sqrt{101}}{8}
Add \frac{55}{8} to both sides of the equation.
x ^ 2 -\frac{55}{4}x +\frac{125}{16} = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 16
r + s = \frac{55}{4} rs = \frac{125}{16}
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = \frac{55}{8} - u s = \frac{55}{8} + u
Two numbers r and s sum up to \frac{55}{4} exactly when the average of the two numbers is \frac{1}{2}*\frac{55}{4} = \frac{55}{8}. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(\frac{55}{8} - u) (\frac{55}{8} + u) = \frac{125}{16}
To solve for unknown quantity u, substitute these in the product equation rs = \frac{125}{16}
\frac{3025}{64} - u^2 = \frac{125}{16}
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = \frac{125}{16}-\frac{3025}{64} = -\frac{2525}{64}
Simplify the expression by subtracting \frac{3025}{64} on both sides
u^2 = \frac{2525}{64} u = \pm\sqrt{\frac{2525}{64}} = \pm \frac{\sqrt{2525}}{8}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =\frac{55}{8} - \frac{\sqrt{2525}}{8} = 0.594 s = \frac{55}{8} + \frac{\sqrt{2525}}{8} = 13.156
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}