Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}+10-131=0
Subtract 131 from both sides.
16x^{2}-121=0
Subtract 131 from 10 to get -121.
\left(4x-11\right)\left(4x+11\right)=0
Consider 16x^{2}-121. Rewrite 16x^{2}-121 as \left(4x\right)^{2}-11^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{11}{4} x=-\frac{11}{4}
To find equation solutions, solve 4x-11=0 and 4x+11=0.
16x^{2}=131-10
Subtract 10 from both sides.
16x^{2}=121
Subtract 10 from 131 to get 121.
x^{2}=\frac{121}{16}
Divide both sides by 16.
x=\frac{11}{4} x=-\frac{11}{4}
Take the square root of both sides of the equation.
16x^{2}+10-131=0
Subtract 131 from both sides.
16x^{2}-121=0
Subtract 131 from 10 to get -121.
x=\frac{0±\sqrt{0^{2}-4\times 16\left(-121\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 0 for b, and -121 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 16\left(-121\right)}}{2\times 16}
Square 0.
x=\frac{0±\sqrt{-64\left(-121\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{0±\sqrt{7744}}{2\times 16}
Multiply -64 times -121.
x=\frac{0±88}{2\times 16}
Take the square root of 7744.
x=\frac{0±88}{32}
Multiply 2 times 16.
x=\frac{11}{4}
Now solve the equation x=\frac{0±88}{32} when ± is plus. Reduce the fraction \frac{88}{32} to lowest terms by extracting and canceling out 8.
x=-\frac{11}{4}
Now solve the equation x=\frac{0±88}{32} when ± is minus. Reduce the fraction \frac{-88}{32} to lowest terms by extracting and canceling out 8.
x=\frac{11}{4} x=-\frac{11}{4}
The equation is now solved.