Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}+4\left(\sqrt{3}\right)^{2}-12\sqrt{3}x+9x^{2}-4x\left(2\sqrt{3}-3x\right)=\left(2\sqrt{3}-x\right)^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-3x\right)^{2}.
16x^{2}+4\times 3-12\sqrt{3}x+9x^{2}-4x\left(2\sqrt{3}-3x\right)=\left(2\sqrt{3}-x\right)^{2}
The square of \sqrt{3} is 3.
16x^{2}+12-12\sqrt{3}x+9x^{2}-4x\left(2\sqrt{3}-3x\right)=\left(2\sqrt{3}-x\right)^{2}
Multiply 4 and 3 to get 12.
25x^{2}+12-12\sqrt{3}x-4x\left(2\sqrt{3}-3x\right)=\left(2\sqrt{3}-x\right)^{2}
Combine 16x^{2} and 9x^{2} to get 25x^{2}.
25x^{2}+12-12\sqrt{3}x-4x\left(2\sqrt{3}-3x\right)=4\left(\sqrt{3}\right)^{2}-4\sqrt{3}x+x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(2\sqrt{3}-x\right)^{2}.
25x^{2}+12-12\sqrt{3}x-4x\left(2\sqrt{3}-3x\right)=4\times 3-4\sqrt{3}x+x^{2}
The square of \sqrt{3} is 3.
25x^{2}+12-12\sqrt{3}x-4x\left(2\sqrt{3}-3x\right)=12-4\sqrt{3}x+x^{2}
Multiply 4 and 3 to get 12.
25x^{2}+12-12\sqrt{3}x-4x\left(2\sqrt{3}-3x\right)-12=-4\sqrt{3}x+x^{2}
Subtract 12 from both sides.
25x^{2}+12-12\sqrt{3}x-4x\left(2\sqrt{3}-3x\right)-12+4\sqrt{3}x=x^{2}
Add 4\sqrt{3}x to both sides.
25x^{2}+12-12\sqrt{3}x-4x\left(2\sqrt{3}-3x\right)-12+4\sqrt{3}x-x^{2}=0
Subtract x^{2} from both sides.
25x^{2}+12-12\sqrt{3}x-8\sqrt{3}x+12x^{2}-12+4\sqrt{3}x-x^{2}=0
Use the distributive property to multiply -4x by 2\sqrt{3}-3x.
25x^{2}+12-20\sqrt{3}x+12x^{2}-12+4\sqrt{3}x-x^{2}=0
Combine -12\sqrt{3}x and -8\sqrt{3}x to get -20\sqrt{3}x.
37x^{2}+12-20\sqrt{3}x-12+4\sqrt{3}x-x^{2}=0
Combine 25x^{2} and 12x^{2} to get 37x^{2}.
37x^{2}-20\sqrt{3}x+4\sqrt{3}x-x^{2}=0
Subtract 12 from 12 to get 0.
37x^{2}-16\sqrt{3}x-x^{2}=0
Combine -20\sqrt{3}x and 4\sqrt{3}x to get -16\sqrt{3}x.
36x^{2}-16\sqrt{3}x=0
Combine 37x^{2} and -x^{2} to get 36x^{2}.
x\left(36x-16\sqrt{3}\right)=0
Factor out x.
x=0 x=\frac{4\sqrt{3}}{9}
To find equation solutions, solve x=0 and 36x-16\sqrt{3}=0.