Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

4\left(4t^{2}+7t\right)
Factor out 4.
t\left(4t+7\right)
Consider 4t^{2}+7t. Factor out t.
4t\left(4t+7\right)
Rewrite the complete factored expression.
16t^{2}+28t=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
t=\frac{-28±\sqrt{28^{2}}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
t=\frac{-28±28}{2\times 16}
Take the square root of 28^{2}.
t=\frac{-28±28}{32}
Multiply 2 times 16.
t=\frac{0}{32}
Now solve the equation t=\frac{-28±28}{32} when ± is plus. Add -28 to 28.
t=0
Divide 0 by 32.
t=-\frac{56}{32}
Now solve the equation t=\frac{-28±28}{32} when ± is minus. Subtract 28 from -28.
t=-\frac{7}{4}
Reduce the fraction \frac{-56}{32} to lowest terms by extracting and canceling out 8.
16t^{2}+28t=16t\left(t-\left(-\frac{7}{4}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 0 for x_{1} and -\frac{7}{4} for x_{2}.
16t^{2}+28t=16t\left(t+\frac{7}{4}\right)
Simplify all the expressions of the form p-\left(-q\right) to p+q.
16t^{2}+28t=16t\times \frac{4t+7}{4}
Add \frac{7}{4} to t by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
16t^{2}+28t=4t\left(4t+7\right)
Cancel out 4, the greatest common factor in 16 and 4.