Skip to main content
Solve for r
Tick mark Image

Similar Problems from Web Search

Share

r^{2}=\frac{9}{16}
Divide both sides by 16.
r^{2}-\frac{9}{16}=0
Subtract \frac{9}{16} from both sides.
16r^{2}-9=0
Multiply both sides by 16.
\left(4r-3\right)\left(4r+3\right)=0
Consider 16r^{2}-9. Rewrite 16r^{2}-9 as \left(4r\right)^{2}-3^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
r=\frac{3}{4} r=-\frac{3}{4}
To find equation solutions, solve 4r-3=0 and 4r+3=0.
r^{2}=\frac{9}{16}
Divide both sides by 16.
r=\frac{3}{4} r=-\frac{3}{4}
Take the square root of both sides of the equation.
r^{2}=\frac{9}{16}
Divide both sides by 16.
r^{2}-\frac{9}{16}=0
Subtract \frac{9}{16} from both sides.
r=\frac{0±\sqrt{0^{2}-4\left(-\frac{9}{16}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -\frac{9}{16} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
r=\frac{0±\sqrt{-4\left(-\frac{9}{16}\right)}}{2}
Square 0.
r=\frac{0±\sqrt{\frac{9}{4}}}{2}
Multiply -4 times -\frac{9}{16}.
r=\frac{0±\frac{3}{2}}{2}
Take the square root of \frac{9}{4}.
r=\frac{3}{4}
Now solve the equation r=\frac{0±\frac{3}{2}}{2} when ± is plus.
r=-\frac{3}{4}
Now solve the equation r=\frac{0±\frac{3}{2}}{2} when ± is minus.
r=\frac{3}{4} r=-\frac{3}{4}
The equation is now solved.