Solve for x (complex solution)
x\in \frac{2^{\frac{2}{3}}}{2},\frac{2^{\frac{2}{3}}e^{\frac{4\pi i}{3}}}{2},\frac{2^{\frac{2}{3}}e^{\frac{2\pi i}{3}}}{2},\frac{3^{\frac{2}{3}}e^{\frac{5\pi i}{3}}}{2},\frac{3^{\frac{2}{3}}e^{\frac{\pi i}{3}}}{2},-\frac{3^{\frac{2}{3}}}{2}
Solve for x
x = -\frac{3 ^ {\frac{2}{3}}}{2} \approx -1.040041912
x=\frac{2^{\frac{2}{3}}}{2}\approx 0.793700526
Graph
Quiz
Quadratic Equation
5 problems similar to:
16 ( x ^ { 3 } + 1 ) ^ { 2 } - 22 ( x ^ { 3 } + 1 ) - 3 = 0
Share
Copied to clipboard
16\left(\left(x^{3}\right)^{2}+2x^{3}+1\right)-22\left(x^{3}+1\right)-3=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{3}+1\right)^{2}.
16\left(x^{6}+2x^{3}+1\right)-22\left(x^{3}+1\right)-3=0
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
16x^{6}+32x^{3}+16-22\left(x^{3}+1\right)-3=0
Use the distributive property to multiply 16 by x^{6}+2x^{3}+1.
16x^{6}+32x^{3}+16-22x^{3}-22-3=0
Use the distributive property to multiply -22 by x^{3}+1.
16x^{6}+10x^{3}+16-22-3=0
Combine 32x^{3} and -22x^{3} to get 10x^{3}.
16x^{6}+10x^{3}-6-3=0
Subtract 22 from 16 to get -6.
16x^{6}+10x^{3}-9=0
Subtract 3 from -6 to get -9.
16t^{2}+10t-9=0
Substitute t for x^{3}.
t=\frac{-10±\sqrt{10^{2}-4\times 16\left(-9\right)}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 16 for a, 10 for b, and -9 for c in the quadratic formula.
t=\frac{-10±26}{32}
Do the calculations.
t=\frac{1}{2} t=-\frac{9}{8}
Solve the equation t=\frac{-10±26}{32} when ± is plus and when ± is minus.
x=-\frac{e^{\frac{\pi i}{3}}}{\sqrt[3]{2}} x=\frac{ie^{\frac{\pi i}{6}}}{\sqrt[3]{2}} x=\frac{1}{\sqrt[3]{2}} x=-\frac{\sqrt[3]{9}ie^{\frac{\pi i}{6}}}{2} x=-\frac{\sqrt[3]{9}}{2} x=\frac{\sqrt[3]{9}e^{\frac{\pi i}{3}}}{2}
Since x=t^{3}, the solutions are obtained by solving the equation for each t.
16\left(\left(x^{3}\right)^{2}+2x^{3}+1\right)-22\left(x^{3}+1\right)-3=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{3}+1\right)^{2}.
16\left(x^{6}+2x^{3}+1\right)-22\left(x^{3}+1\right)-3=0
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
16x^{6}+32x^{3}+16-22\left(x^{3}+1\right)-3=0
Use the distributive property to multiply 16 by x^{6}+2x^{3}+1.
16x^{6}+32x^{3}+16-22x^{3}-22-3=0
Use the distributive property to multiply -22 by x^{3}+1.
16x^{6}+10x^{3}+16-22-3=0
Combine 32x^{3} and -22x^{3} to get 10x^{3}.
16x^{6}+10x^{3}-6-3=0
Subtract 22 from 16 to get -6.
16x^{6}+10x^{3}-9=0
Subtract 3 from -6 to get -9.
16t^{2}+10t-9=0
Substitute t for x^{3}.
t=\frac{-10±\sqrt{10^{2}-4\times 16\left(-9\right)}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 16 for a, 10 for b, and -9 for c in the quadratic formula.
t=\frac{-10±26}{32}
Do the calculations.
t=\frac{1}{2} t=-\frac{9}{8}
Solve the equation t=\frac{-10±26}{32} when ± is plus and when ± is minus.
x=\frac{1}{\sqrt[3]{2}} x=-\frac{\sqrt[3]{9}}{2}
Since x=t^{3}, the solutions are obtained by evaluating x=\sqrt[3]{t} for each t.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}