Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

16\left(\left(x^{3}\right)^{2}+2x^{3}+1\right)-22\left(x^{3}+1\right)-3=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{3}+1\right)^{2}.
16\left(x^{6}+2x^{3}+1\right)-22\left(x^{3}+1\right)-3=0
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
16x^{6}+32x^{3}+16-22\left(x^{3}+1\right)-3=0
Use the distributive property to multiply 16 by x^{6}+2x^{3}+1.
16x^{6}+32x^{3}+16-22x^{3}-22-3=0
Use the distributive property to multiply -22 by x^{3}+1.
16x^{6}+10x^{3}+16-22-3=0
Combine 32x^{3} and -22x^{3} to get 10x^{3}.
16x^{6}+10x^{3}-6-3=0
Subtract 22 from 16 to get -6.
16x^{6}+10x^{3}-9=0
Subtract 3 from -6 to get -9.
16t^{2}+10t-9=0
Substitute t for x^{3}.
t=\frac{-10±\sqrt{10^{2}-4\times 16\left(-9\right)}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 16 for a, 10 for b, and -9 for c in the quadratic formula.
t=\frac{-10±26}{32}
Do the calculations.
t=\frac{1}{2} t=-\frac{9}{8}
Solve the equation t=\frac{-10±26}{32} when ± is plus and when ± is minus.
x=-\frac{e^{\frac{\pi i}{3}}}{\sqrt[3]{2}} x=\frac{ie^{\frac{\pi i}{6}}}{\sqrt[3]{2}} x=\frac{1}{\sqrt[3]{2}} x=-\frac{\sqrt[3]{9}ie^{\frac{\pi i}{6}}}{2} x=-\frac{\sqrt[3]{9}}{2} x=\frac{\sqrt[3]{9}e^{\frac{\pi i}{3}}}{2}
Since x=t^{3}, the solutions are obtained by solving the equation for each t.
16\left(\left(x^{3}\right)^{2}+2x^{3}+1\right)-22\left(x^{3}+1\right)-3=0
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(x^{3}+1\right)^{2}.
16\left(x^{6}+2x^{3}+1\right)-22\left(x^{3}+1\right)-3=0
To raise a power to another power, multiply the exponents. Multiply 3 and 2 to get 6.
16x^{6}+32x^{3}+16-22\left(x^{3}+1\right)-3=0
Use the distributive property to multiply 16 by x^{6}+2x^{3}+1.
16x^{6}+32x^{3}+16-22x^{3}-22-3=0
Use the distributive property to multiply -22 by x^{3}+1.
16x^{6}+10x^{3}+16-22-3=0
Combine 32x^{3} and -22x^{3} to get 10x^{3}.
16x^{6}+10x^{3}-6-3=0
Subtract 22 from 16 to get -6.
16x^{6}+10x^{3}-9=0
Subtract 3 from -6 to get -9.
16t^{2}+10t-9=0
Substitute t for x^{3}.
t=\frac{-10±\sqrt{10^{2}-4\times 16\left(-9\right)}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 16 for a, 10 for b, and -9 for c in the quadratic formula.
t=\frac{-10±26}{32}
Do the calculations.
t=\frac{1}{2} t=-\frac{9}{8}
Solve the equation t=\frac{-10±26}{32} when ± is plus and when ± is minus.
x=\frac{1}{\sqrt[3]{2}} x=-\frac{\sqrt[3]{9}}{2}
Since x=t^{3}, the solutions are obtained by evaluating x=\sqrt[3]{t} for each t.