Solve for x
x = \frac{3 \sqrt{5} + 5}{8} \approx 1.463525492
x=\frac{5-3\sqrt{5}}{8}\approx -0.213525492
Graph
Share
Copied to clipboard
16x^{2}-20x-5=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 16\left(-5\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -20 for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 16\left(-5\right)}}{2\times 16}
Square -20.
x=\frac{-\left(-20\right)±\sqrt{400-64\left(-5\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-20\right)±\sqrt{400+320}}{2\times 16}
Multiply -64 times -5.
x=\frac{-\left(-20\right)±\sqrt{720}}{2\times 16}
Add 400 to 320.
x=\frac{-\left(-20\right)±12\sqrt{5}}{2\times 16}
Take the square root of 720.
x=\frac{20±12\sqrt{5}}{2\times 16}
The opposite of -20 is 20.
x=\frac{20±12\sqrt{5}}{32}
Multiply 2 times 16.
x=\frac{12\sqrt{5}+20}{32}
Now solve the equation x=\frac{20±12\sqrt{5}}{32} when ± is plus. Add 20 to 12\sqrt{5}.
x=\frac{3\sqrt{5}+5}{8}
Divide 20+12\sqrt{5} by 32.
x=\frac{20-12\sqrt{5}}{32}
Now solve the equation x=\frac{20±12\sqrt{5}}{32} when ± is minus. Subtract 12\sqrt{5} from 20.
x=\frac{5-3\sqrt{5}}{8}
Divide 20-12\sqrt{5} by 32.
x=\frac{3\sqrt{5}+5}{8} x=\frac{5-3\sqrt{5}}{8}
The equation is now solved.
16x^{2}-20x-5=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
16x^{2}-20x-5-\left(-5\right)=-\left(-5\right)
Add 5 to both sides of the equation.
16x^{2}-20x=-\left(-5\right)
Subtracting -5 from itself leaves 0.
16x^{2}-20x=5
Subtract -5 from 0.
\frac{16x^{2}-20x}{16}=\frac{5}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{20}{16}\right)x=\frac{5}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-\frac{5}{4}x=\frac{5}{16}
Reduce the fraction \frac{-20}{16} to lowest terms by extracting and canceling out 4.
x^{2}-\frac{5}{4}x+\left(-\frac{5}{8}\right)^{2}=\frac{5}{16}+\left(-\frac{5}{8}\right)^{2}
Divide -\frac{5}{4}, the coefficient of the x term, by 2 to get -\frac{5}{8}. Then add the square of -\frac{5}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{4}x+\frac{25}{64}=\frac{5}{16}+\frac{25}{64}
Square -\frac{5}{8} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{4}x+\frac{25}{64}=\frac{45}{64}
Add \frac{5}{16} to \frac{25}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{8}\right)^{2}=\frac{45}{64}
Factor x^{2}-\frac{5}{4}x+\frac{25}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{8}\right)^{2}}=\sqrt{\frac{45}{64}}
Take the square root of both sides of the equation.
x-\frac{5}{8}=\frac{3\sqrt{5}}{8} x-\frac{5}{8}=-\frac{3\sqrt{5}}{8}
Simplify.
x=\frac{3\sqrt{5}+5}{8} x=\frac{5-3\sqrt{5}}{8}
Add \frac{5}{8} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}