Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}-128x+319=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-128\right)±\sqrt{\left(-128\right)^{2}-4\times 16\times 319}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, -128 for b, and 319 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-128\right)±\sqrt{16384-4\times 16\times 319}}{2\times 16}
Square -128.
x=\frac{-\left(-128\right)±\sqrt{16384-64\times 319}}{2\times 16}
Multiply -4 times 16.
x=\frac{-\left(-128\right)±\sqrt{16384-20416}}{2\times 16}
Multiply -64 times 319.
x=\frac{-\left(-128\right)±\sqrt{-4032}}{2\times 16}
Add 16384 to -20416.
x=\frac{-\left(-128\right)±24\sqrt{7}i}{2\times 16}
Take the square root of -4032.
x=\frac{128±24\sqrt{7}i}{2\times 16}
The opposite of -128 is 128.
x=\frac{128±24\sqrt{7}i}{32}
Multiply 2 times 16.
x=\frac{128+24\sqrt{7}i}{32}
Now solve the equation x=\frac{128±24\sqrt{7}i}{32} when ± is plus. Add 128 to 24i\sqrt{7}.
x=\frac{3\sqrt{7}i}{4}+4
Divide 128+24i\sqrt{7} by 32.
x=\frac{-24\sqrt{7}i+128}{32}
Now solve the equation x=\frac{128±24\sqrt{7}i}{32} when ± is minus. Subtract 24i\sqrt{7} from 128.
x=-\frac{3\sqrt{7}i}{4}+4
Divide 128-24i\sqrt{7} by 32.
x=\frac{3\sqrt{7}i}{4}+4 x=-\frac{3\sqrt{7}i}{4}+4
The equation is now solved.
16x^{2}-128x+319=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
16x^{2}-128x+319-319=-319
Subtract 319 from both sides of the equation.
16x^{2}-128x=-319
Subtracting 319 from itself leaves 0.
\frac{16x^{2}-128x}{16}=-\frac{319}{16}
Divide both sides by 16.
x^{2}+\left(-\frac{128}{16}\right)x=-\frac{319}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}-8x=-\frac{319}{16}
Divide -128 by 16.
x^{2}-8x+\left(-4\right)^{2}=-\frac{319}{16}+\left(-4\right)^{2}
Divide -8, the coefficient of the x term, by 2 to get -4. Then add the square of -4 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-8x+16=-\frac{319}{16}+16
Square -4.
x^{2}-8x+16=-\frac{63}{16}
Add -\frac{319}{16} to 16.
\left(x-4\right)^{2}=-\frac{63}{16}
Factor x^{2}-8x+16. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-4\right)^{2}}=\sqrt{-\frac{63}{16}}
Take the square root of both sides of the equation.
x-4=\frac{3\sqrt{7}i}{4} x-4=-\frac{3\sqrt{7}i}{4}
Simplify.
x=\frac{3\sqrt{7}i}{4}+4 x=-\frac{3\sqrt{7}i}{4}+4
Add 4 to both sides of the equation.