Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

16x^{2}+32x-271=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-32±\sqrt{32^{2}-4\times 16\left(-271\right)}}{2\times 16}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-32±\sqrt{1024-4\times 16\left(-271\right)}}{2\times 16}
Square 32.
x=\frac{-32±\sqrt{1024-64\left(-271\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-32±\sqrt{1024+17344}}{2\times 16}
Multiply -64 times -271.
x=\frac{-32±\sqrt{18368}}{2\times 16}
Add 1024 to 17344.
x=\frac{-32±8\sqrt{287}}{2\times 16}
Take the square root of 18368.
x=\frac{-32±8\sqrt{287}}{32}
Multiply 2 times 16.
x=\frac{8\sqrt{287}-32}{32}
Now solve the equation x=\frac{-32±8\sqrt{287}}{32} when ± is plus. Add -32 to 8\sqrt{287}.
x=\frac{\sqrt{287}}{4}-1
Divide -32+8\sqrt{287} by 32.
x=\frac{-8\sqrt{287}-32}{32}
Now solve the equation x=\frac{-32±8\sqrt{287}}{32} when ± is minus. Subtract 8\sqrt{287} from -32.
x=-\frac{\sqrt{287}}{4}-1
Divide -32-8\sqrt{287} by 32.
16x^{2}+32x-271=16\left(x-\left(\frac{\sqrt{287}}{4}-1\right)\right)\left(x-\left(-\frac{\sqrt{287}}{4}-1\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute -1+\frac{\sqrt{287}}{4} for x_{1} and -1-\frac{\sqrt{287}}{4} for x_{2}.