Solve for x
x = \frac{\sqrt{18001} - 23}{32} \approx 3.473993918
x=\frac{-\sqrt{18001}-23}{32}\approx -4.911493918
Graph
Share
Copied to clipboard
16x^{2}+23x=273
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
16x^{2}+23x-273=273-273
Subtract 273 from both sides of the equation.
16x^{2}+23x-273=0
Subtracting 273 from itself leaves 0.
x=\frac{-23±\sqrt{23^{2}-4\times 16\left(-273\right)}}{2\times 16}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 16 for a, 23 for b, and -273 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-23±\sqrt{529-4\times 16\left(-273\right)}}{2\times 16}
Square 23.
x=\frac{-23±\sqrt{529-64\left(-273\right)}}{2\times 16}
Multiply -4 times 16.
x=\frac{-23±\sqrt{529+17472}}{2\times 16}
Multiply -64 times -273.
x=\frac{-23±\sqrt{18001}}{2\times 16}
Add 529 to 17472.
x=\frac{-23±\sqrt{18001}}{32}
Multiply 2 times 16.
x=\frac{\sqrt{18001}-23}{32}
Now solve the equation x=\frac{-23±\sqrt{18001}}{32} when ± is plus. Add -23 to \sqrt{18001}.
x=\frac{-\sqrt{18001}-23}{32}
Now solve the equation x=\frac{-23±\sqrt{18001}}{32} when ± is minus. Subtract \sqrt{18001} from -23.
x=\frac{\sqrt{18001}-23}{32} x=\frac{-\sqrt{18001}-23}{32}
The equation is now solved.
16x^{2}+23x=273
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{16x^{2}+23x}{16}=\frac{273}{16}
Divide both sides by 16.
x^{2}+\frac{23}{16}x=\frac{273}{16}
Dividing by 16 undoes the multiplication by 16.
x^{2}+\frac{23}{16}x+\left(\frac{23}{32}\right)^{2}=\frac{273}{16}+\left(\frac{23}{32}\right)^{2}
Divide \frac{23}{16}, the coefficient of the x term, by 2 to get \frac{23}{32}. Then add the square of \frac{23}{32} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{23}{16}x+\frac{529}{1024}=\frac{273}{16}+\frac{529}{1024}
Square \frac{23}{32} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{23}{16}x+\frac{529}{1024}=\frac{18001}{1024}
Add \frac{273}{16} to \frac{529}{1024} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{23}{32}\right)^{2}=\frac{18001}{1024}
Factor x^{2}+\frac{23}{16}x+\frac{529}{1024}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{23}{32}\right)^{2}}=\sqrt{\frac{18001}{1024}}
Take the square root of both sides of the equation.
x+\frac{23}{32}=\frac{\sqrt{18001}}{32} x+\frac{23}{32}=-\frac{\sqrt{18001}}{32}
Simplify.
x=\frac{\sqrt{18001}-23}{32} x=\frac{-\sqrt{18001}-23}{32}
Subtract \frac{23}{32} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}