Solve for x
x = -\frac{10}{9} = -1\frac{1}{9} \approx -1.111111111
Solve for x (complex solution)
x=\frac{2\pi n_{1}i}{9\ln(2)}-\frac{10}{9}
n_{1}\in \mathrm{Z}
Graph
Share
Copied to clipboard
16\times 8^{3x+2}=1
Use the rules of exponents and logarithms to solve the equation.
8^{3x+2}=\frac{1}{16}
Divide both sides by 16.
\log(8^{3x+2})=\log(\frac{1}{16})
Take the logarithm of both sides of the equation.
\left(3x+2\right)\log(8)=\log(\frac{1}{16})
The logarithm of a number raised to a power is the power times the logarithm of the number.
3x+2=\frac{\log(\frac{1}{16})}{\log(8)}
Divide both sides by \log(8).
3x+2=\log_{8}\left(\frac{1}{16}\right)
By the change-of-base formula \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right).
3x=-\frac{4}{3}-2
Subtract 2 from both sides of the equation.
x=-\frac{\frac{10}{3}}{3}
Divide both sides by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}