Solve for n
n = \frac{27}{8} = 3\frac{3}{8} = 3.375
Share
Copied to clipboard
16\times 4+1=8\times \frac{1-\frac{3}{2}n}{1-\frac{3}{2}}
Multiply both sides of the equation by 4.
64+1=8\times \frac{1-\frac{3}{2}n}{1-\frac{3}{2}}
Multiply 16 and 4 to get 64.
65=8\times \frac{1-\frac{3}{2}n}{1-\frac{3}{2}}
Add 64 and 1 to get 65.
65=8\times \frac{1-\frac{3}{2}n}{\frac{2}{2}-\frac{3}{2}}
Convert 1 to fraction \frac{2}{2}.
65=8\times \frac{1-\frac{3}{2}n}{\frac{2-3}{2}}
Since \frac{2}{2} and \frac{3}{2} have the same denominator, subtract them by subtracting their numerators.
65=8\times \frac{1-\frac{3}{2}n}{-\frac{1}{2}}
Subtract 3 from 2 to get -1.
65=8\left(-2+3n\right)
Divide each term of 1-\frac{3}{2}n by -\frac{1}{2} to get -2+3n.
65=-16+24n
Use the distributive property to multiply 8 by -2+3n.
-16+24n=65
Swap sides so that all variable terms are on the left hand side.
24n=65+16
Add 16 to both sides.
24n=81
Add 65 and 16 to get 81.
n=\frac{81}{24}
Divide both sides by 24.
n=\frac{27}{8}
Reduce the fraction \frac{81}{24} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}