Solve for x
x = \frac{14}{5} = 2\frac{4}{5} = 2.8
Graph
Share
Copied to clipboard
256-\left(10+x\right)^{2}=10^{2}-x^{2}
Calculate 16 to the power of 2 and get 256.
256-\left(100+20x+x^{2}\right)=10^{2}-x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(10+x\right)^{2}.
256-100-20x-x^{2}=10^{2}-x^{2}
To find the opposite of 100+20x+x^{2}, find the opposite of each term.
156-20x-x^{2}=10^{2}-x^{2}
Subtract 100 from 256 to get 156.
156-20x-x^{2}=100-x^{2}
Calculate 10 to the power of 2 and get 100.
156-20x-x^{2}+x^{2}=100
Add x^{2} to both sides.
156-20x=100
Combine -x^{2} and x^{2} to get 0.
-20x=100-156
Subtract 156 from both sides.
-20x=-56
Subtract 156 from 100 to get -56.
x=\frac{-56}{-20}
Divide both sides by -20.
x=\frac{14}{5}
Reduce the fraction \frac{-56}{-20} to lowest terms by extracting and canceling out -4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}