Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

16=z^{2}-9
Consider \left(z-3\right)\left(z+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
z^{2}-9=16
Swap sides so that all variable terms are on the left hand side.
z^{2}=16+9
Add 9 to both sides.
z^{2}=25
Add 16 and 9 to get 25.
z=5 z=-5
Take the square root of both sides of the equation.
16=z^{2}-9
Consider \left(z-3\right)\left(z+3\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Square 3.
z^{2}-9=16
Swap sides so that all variable terms are on the left hand side.
z^{2}-9-16=0
Subtract 16 from both sides.
z^{2}-25=0
Subtract 16 from -9 to get -25.
z=\frac{0±\sqrt{0^{2}-4\left(-25\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 0 for b, and -25 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\left(-25\right)}}{2}
Square 0.
z=\frac{0±\sqrt{100}}{2}
Multiply -4 times -25.
z=\frac{0±10}{2}
Take the square root of 100.
z=5
Now solve the equation z=\frac{0±10}{2} when ± is plus. Divide 10 by 2.
z=-5
Now solve the equation z=\frac{0±10}{2} when ± is minus. Divide -10 by 2.
z=5 z=-5
The equation is now solved.