Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3y^{2}=57-16
Subtract 16 from both sides.
3y^{2}=41
Subtract 16 from 57 to get 41.
y^{2}=\frac{41}{3}
Divide both sides by 3.
y=\frac{\sqrt{123}}{3} y=-\frac{\sqrt{123}}{3}
Take the square root of both sides of the equation.
16+3y^{2}-57=0
Subtract 57 from both sides.
-41+3y^{2}=0
Subtract 57 from 16 to get -41.
3y^{2}-41=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
y=\frac{0±\sqrt{0^{2}-4\times 3\left(-41\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and -41 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{0±\sqrt{-4\times 3\left(-41\right)}}{2\times 3}
Square 0.
y=\frac{0±\sqrt{-12\left(-41\right)}}{2\times 3}
Multiply -4 times 3.
y=\frac{0±\sqrt{492}}{2\times 3}
Multiply -12 times -41.
y=\frac{0±2\sqrt{123}}{2\times 3}
Take the square root of 492.
y=\frac{0±2\sqrt{123}}{6}
Multiply 2 times 3.
y=\frac{\sqrt{123}}{3}
Now solve the equation y=\frac{0±2\sqrt{123}}{6} when ± is plus.
y=-\frac{\sqrt{123}}{3}
Now solve the equation y=\frac{0±2\sqrt{123}}{6} when ± is minus.
y=\frac{\sqrt{123}}{3} y=-\frac{\sqrt{123}}{3}
The equation is now solved.