Evaluate
179
Factor
179
Share
Copied to clipboard
\begin{array}{l}\phantom{89)}\phantom{1}\\89\overline{)15931}\\\end{array}
Use the 1^{st} digit 1 from dividend 15931
\begin{array}{l}\phantom{89)}0\phantom{2}\\89\overline{)15931}\\\end{array}
Since 1 is less than 89, use the next digit 5 from dividend 15931 and add 0 to the quotient
\begin{array}{l}\phantom{89)}0\phantom{3}\\89\overline{)15931}\\\end{array}
Use the 2^{nd} digit 5 from dividend 15931
\begin{array}{l}\phantom{89)}00\phantom{4}\\89\overline{)15931}\\\end{array}
Since 15 is less than 89, use the next digit 9 from dividend 15931 and add 0 to the quotient
\begin{array}{l}\phantom{89)}00\phantom{5}\\89\overline{)15931}\\\end{array}
Use the 3^{rd} digit 9 from dividend 15931
\begin{array}{l}\phantom{89)}001\phantom{6}\\89\overline{)15931}\\\phantom{89)}\underline{\phantom{9}89\phantom{99}}\\\phantom{89)9}70\\\end{array}
Find closest multiple of 89 to 159. We see that 1 \times 89 = 89 is the nearest. Now subtract 89 from 159 to get reminder 70. Add 1 to quotient.
\begin{array}{l}\phantom{89)}001\phantom{7}\\89\overline{)15931}\\\phantom{89)}\underline{\phantom{9}89\phantom{99}}\\\phantom{89)9}703\\\end{array}
Use the 4^{th} digit 3 from dividend 15931
\begin{array}{l}\phantom{89)}0017\phantom{8}\\89\overline{)15931}\\\phantom{89)}\underline{\phantom{9}89\phantom{99}}\\\phantom{89)9}703\\\phantom{89)}\underline{\phantom{9}623\phantom{9}}\\\phantom{89)99}80\\\end{array}
Find closest multiple of 89 to 703. We see that 7 \times 89 = 623 is the nearest. Now subtract 623 from 703 to get reminder 80. Add 7 to quotient.
\begin{array}{l}\phantom{89)}0017\phantom{9}\\89\overline{)15931}\\\phantom{89)}\underline{\phantom{9}89\phantom{99}}\\\phantom{89)9}703\\\phantom{89)}\underline{\phantom{9}623\phantom{9}}\\\phantom{89)99}801\\\end{array}
Use the 5^{th} digit 1 from dividend 15931
\begin{array}{l}\phantom{89)}00179\phantom{10}\\89\overline{)15931}\\\phantom{89)}\underline{\phantom{9}89\phantom{99}}\\\phantom{89)9}703\\\phantom{89)}\underline{\phantom{9}623\phantom{9}}\\\phantom{89)99}801\\\phantom{89)}\underline{\phantom{99}801\phantom{}}\\\phantom{89)99999}0\\\end{array}
Find closest multiple of 89 to 801. We see that 9 \times 89 = 801 is the nearest. Now subtract 801 from 801 to get reminder 0. Add 9 to quotient.
\text{Quotient: }179 \text{Reminder: }0
Since 0 is less than 89, stop the division. The reminder is 0. The topmost line 00179 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 179.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}