Evaluate
\frac{395}{93}\approx 4.247311828
Factor
\frac{5 \cdot 79}{3 \cdot 31} = 4\frac{23}{93} = 4.247311827956989
Share
Copied to clipboard
\begin{array}{l}\phantom{372)}\phantom{1}\\372\overline{)1580}\\\end{array}
Use the 1^{st} digit 1 from dividend 1580
\begin{array}{l}\phantom{372)}0\phantom{2}\\372\overline{)1580}\\\end{array}
Since 1 is less than 372, use the next digit 5 from dividend 1580 and add 0 to the quotient
\begin{array}{l}\phantom{372)}0\phantom{3}\\372\overline{)1580}\\\end{array}
Use the 2^{nd} digit 5 from dividend 1580
\begin{array}{l}\phantom{372)}00\phantom{4}\\372\overline{)1580}\\\end{array}
Since 15 is less than 372, use the next digit 8 from dividend 1580 and add 0 to the quotient
\begin{array}{l}\phantom{372)}00\phantom{5}\\372\overline{)1580}\\\end{array}
Use the 3^{rd} digit 8 from dividend 1580
\begin{array}{l}\phantom{372)}000\phantom{6}\\372\overline{)1580}\\\end{array}
Since 158 is less than 372, use the next digit 0 from dividend 1580 and add 0 to the quotient
\begin{array}{l}\phantom{372)}000\phantom{7}\\372\overline{)1580}\\\end{array}
Use the 4^{th} digit 0 from dividend 1580
\begin{array}{l}\phantom{372)}0004\phantom{8}\\372\overline{)1580}\\\phantom{372)}\underline{\phantom{}1488\phantom{}}\\\phantom{372)99}92\\\end{array}
Find closest multiple of 372 to 1580. We see that 4 \times 372 = 1488 is the nearest. Now subtract 1488 from 1580 to get reminder 92. Add 4 to quotient.
\text{Quotient: }4 \text{Reminder: }92
Since 92 is less than 372, stop the division. The reminder is 92. The topmost line 0004 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}