Evaluate
5
Factor
5
Share
Copied to clipboard
\begin{array}{l}\phantom{311)}\phantom{1}\\311\overline{)1555}\\\end{array}
Use the 1^{st} digit 1 from dividend 1555
\begin{array}{l}\phantom{311)}0\phantom{2}\\311\overline{)1555}\\\end{array}
Since 1 is less than 311, use the next digit 5 from dividend 1555 and add 0 to the quotient
\begin{array}{l}\phantom{311)}0\phantom{3}\\311\overline{)1555}\\\end{array}
Use the 2^{nd} digit 5 from dividend 1555
\begin{array}{l}\phantom{311)}00\phantom{4}\\311\overline{)1555}\\\end{array}
Since 15 is less than 311, use the next digit 5 from dividend 1555 and add 0 to the quotient
\begin{array}{l}\phantom{311)}00\phantom{5}\\311\overline{)1555}\\\end{array}
Use the 3^{rd} digit 5 from dividend 1555
\begin{array}{l}\phantom{311)}000\phantom{6}\\311\overline{)1555}\\\end{array}
Since 155 is less than 311, use the next digit 5 from dividend 1555 and add 0 to the quotient
\begin{array}{l}\phantom{311)}000\phantom{7}\\311\overline{)1555}\\\end{array}
Use the 4^{th} digit 5 from dividend 1555
\begin{array}{l}\phantom{311)}0005\phantom{8}\\311\overline{)1555}\\\phantom{311)}\underline{\phantom{}1555\phantom{}}\\\phantom{311)9999}0\\\end{array}
Find closest multiple of 311 to 1555. We see that 5 \times 311 = 1555 is the nearest. Now subtract 1555 from 1555 to get reminder 0. Add 5 to quotient.
\text{Quotient: }5 \text{Reminder: }0
Since 0 is less than 311, stop the division. The reminder is 0. The topmost line 0005 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}