Solve for x
x=-\frac{7y}{8}+\frac{31}{32}
Solve for y
y=-\frac{8x}{7}+\frac{31}{28}
Graph
Share
Copied to clipboard
1600x+1400y=1550
Swap sides so that all variable terms are on the left hand side.
1600x=1550-1400y
Subtract 1400y from both sides.
\frac{1600x}{1600}=\frac{1550-1400y}{1600}
Divide both sides by 1600.
x=\frac{1550-1400y}{1600}
Dividing by 1600 undoes the multiplication by 1600.
x=-\frac{7y}{8}+\frac{31}{32}
Divide 1550-1400y by 1600.
1600x+1400y=1550
Swap sides so that all variable terms are on the left hand side.
1400y=1550-1600x
Subtract 1600x from both sides.
\frac{1400y}{1400}=\frac{1550-1600x}{1400}
Divide both sides by 1400.
y=\frac{1550-1600x}{1400}
Dividing by 1400 undoes the multiplication by 1400.
y=-\frac{8x}{7}+\frac{31}{28}
Divide 1550-1600x by 1400.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}