Evaluate
9
Factor
3^{2}
Share
Copied to clipboard
\begin{array}{l}\phantom{17)}\phantom{1}\\17\overline{)153}\\\end{array}
Use the 1^{st} digit 1 from dividend 153
\begin{array}{l}\phantom{17)}0\phantom{2}\\17\overline{)153}\\\end{array}
Since 1 is less than 17, use the next digit 5 from dividend 153 and add 0 to the quotient
\begin{array}{l}\phantom{17)}0\phantom{3}\\17\overline{)153}\\\end{array}
Use the 2^{nd} digit 5 from dividend 153
\begin{array}{l}\phantom{17)}00\phantom{4}\\17\overline{)153}\\\end{array}
Since 15 is less than 17, use the next digit 3 from dividend 153 and add 0 to the quotient
\begin{array}{l}\phantom{17)}00\phantom{5}\\17\overline{)153}\\\end{array}
Use the 3^{rd} digit 3 from dividend 153
\begin{array}{l}\phantom{17)}009\phantom{6}\\17\overline{)153}\\\phantom{17)}\underline{\phantom{}153\phantom{}}\\\phantom{17)999}0\\\end{array}
Find closest multiple of 17 to 153. We see that 9 \times 17 = 153 is the nearest. Now subtract 153 from 153 to get reminder 0. Add 9 to quotient.
\text{Quotient: }9 \text{Reminder: }0
Since 0 is less than 17, stop the division. The reminder is 0. The topmost line 009 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 9.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}