Evaluate
\frac{38}{25}=1.52
Factor
\frac{2 \cdot 19}{5 ^ {2}} = 1\frac{13}{25} = 1.52
Share
Copied to clipboard
\begin{array}{l}\phantom{1000)}\phantom{1}\\1000\overline{)1520}\\\end{array}
Use the 1^{st} digit 1 from dividend 1520
\begin{array}{l}\phantom{1000)}0\phantom{2}\\1000\overline{)1520}\\\end{array}
Since 1 is less than 1000, use the next digit 5 from dividend 1520 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}0\phantom{3}\\1000\overline{)1520}\\\end{array}
Use the 2^{nd} digit 5 from dividend 1520
\begin{array}{l}\phantom{1000)}00\phantom{4}\\1000\overline{)1520}\\\end{array}
Since 15 is less than 1000, use the next digit 2 from dividend 1520 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}00\phantom{5}\\1000\overline{)1520}\\\end{array}
Use the 3^{rd} digit 2 from dividend 1520
\begin{array}{l}\phantom{1000)}000\phantom{6}\\1000\overline{)1520}\\\end{array}
Since 152 is less than 1000, use the next digit 0 from dividend 1520 and add 0 to the quotient
\begin{array}{l}\phantom{1000)}000\phantom{7}\\1000\overline{)1520}\\\end{array}
Use the 4^{th} digit 0 from dividend 1520
\begin{array}{l}\phantom{1000)}0001\phantom{8}\\1000\overline{)1520}\\\phantom{1000)}\underline{\phantom{}1000\phantom{}}\\\phantom{1000)9}520\\\end{array}
Find closest multiple of 1000 to 1520. We see that 1 \times 1000 = 1000 is the nearest. Now subtract 1000 from 1520 to get reminder 520. Add 1 to quotient.
\text{Quotient: }1 \text{Reminder: }520
Since 520 is less than 1000, stop the division. The reminder is 520. The topmost line 0001 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}