Evaluate
\frac{506}{171}\approx 2.959064327
Factor
\frac{2 \cdot 11 \cdot 23}{3 ^ {2} \cdot 19} = 2\frac{164}{171} = 2.9590643274853803
Share
Copied to clipboard
\begin{array}{l}\phantom{513)}\phantom{1}\\513\overline{)1518}\\\end{array}
Use the 1^{st} digit 1 from dividend 1518
\begin{array}{l}\phantom{513)}0\phantom{2}\\513\overline{)1518}\\\end{array}
Since 1 is less than 513, use the next digit 5 from dividend 1518 and add 0 to the quotient
\begin{array}{l}\phantom{513)}0\phantom{3}\\513\overline{)1518}\\\end{array}
Use the 2^{nd} digit 5 from dividend 1518
\begin{array}{l}\phantom{513)}00\phantom{4}\\513\overline{)1518}\\\end{array}
Since 15 is less than 513, use the next digit 1 from dividend 1518 and add 0 to the quotient
\begin{array}{l}\phantom{513)}00\phantom{5}\\513\overline{)1518}\\\end{array}
Use the 3^{rd} digit 1 from dividend 1518
\begin{array}{l}\phantom{513)}000\phantom{6}\\513\overline{)1518}\\\end{array}
Since 151 is less than 513, use the next digit 8 from dividend 1518 and add 0 to the quotient
\begin{array}{l}\phantom{513)}000\phantom{7}\\513\overline{)1518}\\\end{array}
Use the 4^{th} digit 8 from dividend 1518
\begin{array}{l}\phantom{513)}0002\phantom{8}\\513\overline{)1518}\\\phantom{513)}\underline{\phantom{}1026\phantom{}}\\\phantom{513)9}492\\\end{array}
Find closest multiple of 513 to 1518. We see that 2 \times 513 = 1026 is the nearest. Now subtract 1026 from 1518 to get reminder 492. Add 2 to quotient.
\text{Quotient: }2 \text{Reminder: }492
Since 492 is less than 513, stop the division. The reminder is 492. The topmost line 0002 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}