Evaluate
\frac{15000}{91}\approx 164.835164835
Factor
\frac{2 ^ {3} \cdot 3 \cdot 5 ^ {4}}{7 \cdot 13} = 164\frac{76}{91} = 164.83516483516485
Share
Copied to clipboard
\begin{array}{l}\phantom{91)}\phantom{1}\\91\overline{)15000}\\\end{array}
Use the 1^{st} digit 1 from dividend 15000
\begin{array}{l}\phantom{91)}0\phantom{2}\\91\overline{)15000}\\\end{array}
Since 1 is less than 91, use the next digit 5 from dividend 15000 and add 0 to the quotient
\begin{array}{l}\phantom{91)}0\phantom{3}\\91\overline{)15000}\\\end{array}
Use the 2^{nd} digit 5 from dividend 15000
\begin{array}{l}\phantom{91)}00\phantom{4}\\91\overline{)15000}\\\end{array}
Since 15 is less than 91, use the next digit 0 from dividend 15000 and add 0 to the quotient
\begin{array}{l}\phantom{91)}00\phantom{5}\\91\overline{)15000}\\\end{array}
Use the 3^{rd} digit 0 from dividend 15000
\begin{array}{l}\phantom{91)}001\phantom{6}\\91\overline{)15000}\\\phantom{91)}\underline{\phantom{9}91\phantom{99}}\\\phantom{91)9}59\\\end{array}
Find closest multiple of 91 to 150. We see that 1 \times 91 = 91 is the nearest. Now subtract 91 from 150 to get reminder 59. Add 1 to quotient.
\begin{array}{l}\phantom{91)}001\phantom{7}\\91\overline{)15000}\\\phantom{91)}\underline{\phantom{9}91\phantom{99}}\\\phantom{91)9}590\\\end{array}
Use the 4^{th} digit 0 from dividend 15000
\begin{array}{l}\phantom{91)}0016\phantom{8}\\91\overline{)15000}\\\phantom{91)}\underline{\phantom{9}91\phantom{99}}\\\phantom{91)9}590\\\phantom{91)}\underline{\phantom{9}546\phantom{9}}\\\phantom{91)99}44\\\end{array}
Find closest multiple of 91 to 590. We see that 6 \times 91 = 546 is the nearest. Now subtract 546 from 590 to get reminder 44. Add 6 to quotient.
\begin{array}{l}\phantom{91)}0016\phantom{9}\\91\overline{)15000}\\\phantom{91)}\underline{\phantom{9}91\phantom{99}}\\\phantom{91)9}590\\\phantom{91)}\underline{\phantom{9}546\phantom{9}}\\\phantom{91)99}440\\\end{array}
Use the 5^{th} digit 0 from dividend 15000
\begin{array}{l}\phantom{91)}00164\phantom{10}\\91\overline{)15000}\\\phantom{91)}\underline{\phantom{9}91\phantom{99}}\\\phantom{91)9}590\\\phantom{91)}\underline{\phantom{9}546\phantom{9}}\\\phantom{91)99}440\\\phantom{91)}\underline{\phantom{99}364\phantom{}}\\\phantom{91)999}76\\\end{array}
Find closest multiple of 91 to 440. We see that 4 \times 91 = 364 is the nearest. Now subtract 364 from 440 to get reminder 76. Add 4 to quotient.
\text{Quotient: }164 \text{Reminder: }76
Since 76 is less than 91, stop the division. The reminder is 76. The topmost line 00164 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 164.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}