Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{15000}{10000}=\left(1+x\right)^{2}
Divide both sides by 10000.
\frac{3}{2}=\left(1+x\right)^{2}
Reduce the fraction \frac{15000}{10000} to lowest terms by extracting and canceling out 5000.
\frac{3}{2}=1+2x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
1+2x+x^{2}=\frac{3}{2}
Swap sides so that all variable terms are on the left hand side.
1+2x+x^{2}-\frac{3}{2}=0
Subtract \frac{3}{2} from both sides.
-\frac{1}{2}+2x+x^{2}=0
Subtract \frac{3}{2} from 1 to get -\frac{1}{2}.
x^{2}+2x-\frac{1}{2}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\left(-\frac{1}{2}\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 2 for b, and -\frac{1}{2} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\left(-\frac{1}{2}\right)}}{2}
Square 2.
x=\frac{-2±\sqrt{4+2}}{2}
Multiply -4 times -\frac{1}{2}.
x=\frac{-2±\sqrt{6}}{2}
Add 4 to 2.
x=\frac{\sqrt{6}-2}{2}
Now solve the equation x=\frac{-2±\sqrt{6}}{2} when ± is plus. Add -2 to \sqrt{6}.
x=\frac{\sqrt{6}}{2}-1
Divide -2+\sqrt{6} by 2.
x=\frac{-\sqrt{6}-2}{2}
Now solve the equation x=\frac{-2±\sqrt{6}}{2} when ± is minus. Subtract \sqrt{6} from -2.
x=-\frac{\sqrt{6}}{2}-1
Divide -2-\sqrt{6} by 2.
x=\frac{\sqrt{6}}{2}-1 x=-\frac{\sqrt{6}}{2}-1
The equation is now solved.
\frac{15000}{10000}=\left(1+x\right)^{2}
Divide both sides by 10000.
\frac{3}{2}=\left(1+x\right)^{2}
Reduce the fraction \frac{15000}{10000} to lowest terms by extracting and canceling out 5000.
\frac{3}{2}=1+2x+x^{2}
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(1+x\right)^{2}.
1+2x+x^{2}=\frac{3}{2}
Swap sides so that all variable terms are on the left hand side.
2x+x^{2}=\frac{3}{2}-1
Subtract 1 from both sides.
2x+x^{2}=\frac{1}{2}
Subtract 1 from \frac{3}{2} to get \frac{1}{2}.
x^{2}+2x=\frac{1}{2}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
x^{2}+2x+1^{2}=\frac{1}{2}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{1}{2}+1
Square 1.
x^{2}+2x+1=\frac{3}{2}
Add \frac{1}{2} to 1.
\left(x+1\right)^{2}=\frac{3}{2}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{3}{2}}
Take the square root of both sides of the equation.
x+1=\frac{\sqrt{6}}{2} x+1=-\frac{\sqrt{6}}{2}
Simplify.
x=\frac{\sqrt{6}}{2}-1 x=-\frac{\sqrt{6}}{2}-1
Subtract 1 from both sides of the equation.