Evaluate
\frac{15}{4}=3.75
Factor
\frac{3 \cdot 5}{2 ^ {2}} = 3\frac{3}{4} = 3.75
Share
Copied to clipboard
\begin{array}{l}\phantom{400)}\phantom{1}\\400\overline{)1500}\\\end{array}
Use the 1^{st} digit 1 from dividend 1500
\begin{array}{l}\phantom{400)}0\phantom{2}\\400\overline{)1500}\\\end{array}
Since 1 is less than 400, use the next digit 5 from dividend 1500 and add 0 to the quotient
\begin{array}{l}\phantom{400)}0\phantom{3}\\400\overline{)1500}\\\end{array}
Use the 2^{nd} digit 5 from dividend 1500
\begin{array}{l}\phantom{400)}00\phantom{4}\\400\overline{)1500}\\\end{array}
Since 15 is less than 400, use the next digit 0 from dividend 1500 and add 0 to the quotient
\begin{array}{l}\phantom{400)}00\phantom{5}\\400\overline{)1500}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1500
\begin{array}{l}\phantom{400)}000\phantom{6}\\400\overline{)1500}\\\end{array}
Since 150 is less than 400, use the next digit 0 from dividend 1500 and add 0 to the quotient
\begin{array}{l}\phantom{400)}000\phantom{7}\\400\overline{)1500}\\\end{array}
Use the 4^{th} digit 0 from dividend 1500
\begin{array}{l}\phantom{400)}0003\phantom{8}\\400\overline{)1500}\\\phantom{400)}\underline{\phantom{}1200\phantom{}}\\\phantom{400)9}300\\\end{array}
Find closest multiple of 400 to 1500. We see that 3 \times 400 = 1200 is the nearest. Now subtract 1200 from 1500 to get reminder 300. Add 3 to quotient.
\text{Quotient: }3 \text{Reminder: }300
Since 300 is less than 400, stop the division. The reminder is 300. The topmost line 0003 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}