Evaluate
6
Factor
2\times 3
Share
Copied to clipboard
\begin{array}{l}\phantom{250)}\phantom{1}\\250\overline{)1500}\\\end{array}
Use the 1^{st} digit 1 from dividend 1500
\begin{array}{l}\phantom{250)}0\phantom{2}\\250\overline{)1500}\\\end{array}
Since 1 is less than 250, use the next digit 5 from dividend 1500 and add 0 to the quotient
\begin{array}{l}\phantom{250)}0\phantom{3}\\250\overline{)1500}\\\end{array}
Use the 2^{nd} digit 5 from dividend 1500
\begin{array}{l}\phantom{250)}00\phantom{4}\\250\overline{)1500}\\\end{array}
Since 15 is less than 250, use the next digit 0 from dividend 1500 and add 0 to the quotient
\begin{array}{l}\phantom{250)}00\phantom{5}\\250\overline{)1500}\\\end{array}
Use the 3^{rd} digit 0 from dividend 1500
\begin{array}{l}\phantom{250)}000\phantom{6}\\250\overline{)1500}\\\end{array}
Since 150 is less than 250, use the next digit 0 from dividend 1500 and add 0 to the quotient
\begin{array}{l}\phantom{250)}000\phantom{7}\\250\overline{)1500}\\\end{array}
Use the 4^{th} digit 0 from dividend 1500
\begin{array}{l}\phantom{250)}0006\phantom{8}\\250\overline{)1500}\\\phantom{250)}\underline{\phantom{}1500\phantom{}}\\\phantom{250)9999}0\\\end{array}
Find closest multiple of 250 to 1500. We see that 6 \times 250 = 1500 is the nearest. Now subtract 1500 from 1500 to get reminder 0. Add 6 to quotient.
\text{Quotient: }6 \text{Reminder: }0
Since 0 is less than 250, stop the division. The reminder is 0. The topmost line 0006 is the quotient. Remove all zeros at the start of the quotient to get the actual quotient 6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}