Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

150=-2.25\left(x^{2}-12x+36\right)+121
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
150=-2.25x^{2}+27x-81+121
Use the distributive property to multiply -2.25 by x^{2}-12x+36.
150=-2.25x^{2}+27x+40
Add -81 and 121 to get 40.
-2.25x^{2}+27x+40=150
Swap sides so that all variable terms are on the left hand side.
-2.25x^{2}+27x+40-150=0
Subtract 150 from both sides.
-2.25x^{2}+27x-110=0
Subtract 150 from 40 to get -110.
x=\frac{-27±\sqrt{27^{2}-4\left(-2.25\right)\left(-110\right)}}{2\left(-2.25\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -2.25 for a, 27 for b, and -110 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-27±\sqrt{729-4\left(-2.25\right)\left(-110\right)}}{2\left(-2.25\right)}
Square 27.
x=\frac{-27±\sqrt{729+9\left(-110\right)}}{2\left(-2.25\right)}
Multiply -4 times -2.25.
x=\frac{-27±\sqrt{729-990}}{2\left(-2.25\right)}
Multiply 9 times -110.
x=\frac{-27±\sqrt{-261}}{2\left(-2.25\right)}
Add 729 to -990.
x=\frac{-27±3\sqrt{29}i}{2\left(-2.25\right)}
Take the square root of -261.
x=\frac{-27±3\sqrt{29}i}{-4.5}
Multiply 2 times -2.25.
x=\frac{-27+3\sqrt{29}i}{-4.5}
Now solve the equation x=\frac{-27±3\sqrt{29}i}{-4.5} when ± is plus. Add -27 to 3i\sqrt{29}.
x=-\frac{2\sqrt{29}i}{3}+6
Divide -27+3i\sqrt{29} by -4.5 by multiplying -27+3i\sqrt{29} by the reciprocal of -4.5.
x=\frac{-3\sqrt{29}i-27}{-4.5}
Now solve the equation x=\frac{-27±3\sqrt{29}i}{-4.5} when ± is minus. Subtract 3i\sqrt{29} from -27.
x=\frac{2\sqrt{29}i}{3}+6
Divide -27-3i\sqrt{29} by -4.5 by multiplying -27-3i\sqrt{29} by the reciprocal of -4.5.
x=-\frac{2\sqrt{29}i}{3}+6 x=\frac{2\sqrt{29}i}{3}+6
The equation is now solved.
150=-2.25\left(x^{2}-12x+36\right)+121
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(x-6\right)^{2}.
150=-2.25x^{2}+27x-81+121
Use the distributive property to multiply -2.25 by x^{2}-12x+36.
150=-2.25x^{2}+27x+40
Add -81 and 121 to get 40.
-2.25x^{2}+27x+40=150
Swap sides so that all variable terms are on the left hand side.
-2.25x^{2}+27x=150-40
Subtract 40 from both sides.
-2.25x^{2}+27x=110
Subtract 40 from 150 to get 110.
\frac{-2.25x^{2}+27x}{-2.25}=\frac{110}{-2.25}
Divide both sides of the equation by -2.25, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\frac{27}{-2.25}x=\frac{110}{-2.25}
Dividing by -2.25 undoes the multiplication by -2.25.
x^{2}-12x=\frac{110}{-2.25}
Divide 27 by -2.25 by multiplying 27 by the reciprocal of -2.25.
x^{2}-12x=-\frac{440}{9}
Divide 110 by -2.25 by multiplying 110 by the reciprocal of -2.25.
x^{2}-12x+\left(-6\right)^{2}=-\frac{440}{9}+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=-\frac{440}{9}+36
Square -6.
x^{2}-12x+36=-\frac{116}{9}
Add -\frac{440}{9} to 36.
\left(x-6\right)^{2}=-\frac{116}{9}
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{-\frac{116}{9}}
Take the square root of both sides of the equation.
x-6=\frac{2\sqrt{29}i}{3} x-6=-\frac{2\sqrt{29}i}{3}
Simplify.
x=\frac{2\sqrt{29}i}{3}+6 x=-\frac{2\sqrt{29}i}{3}+6
Add 6 to both sides of the equation.