Evaluate
\frac{9768}{65}\approx 150.276923077
Factor
\frac{2 ^ {3} \cdot 3 \cdot 11 \cdot 37}{5 \cdot 13} = 150\frac{18}{65} = 150.27692307692308
Quiz
Arithmetic
5 problems similar to:
150 + \frac { 1 } { 4 + \frac { 1 } { \frac { 3 } { 7 } - 3 } }
Share
Copied to clipboard
150+\frac{1}{4+\frac{1}{\frac{3}{7}-\frac{21}{7}}}
Convert 3 to fraction \frac{21}{7}.
150+\frac{1}{4+\frac{1}{\frac{3-21}{7}}}
Since \frac{3}{7} and \frac{21}{7} have the same denominator, subtract them by subtracting their numerators.
150+\frac{1}{4+\frac{1}{-\frac{18}{7}}}
Subtract 21 from 3 to get -18.
150+\frac{1}{4+1\left(-\frac{7}{18}\right)}
Divide 1 by -\frac{18}{7} by multiplying 1 by the reciprocal of -\frac{18}{7}.
150+\frac{1}{4-\frac{7}{18}}
Multiply 1 and -\frac{7}{18} to get -\frac{7}{18}.
150+\frac{1}{\frac{72}{18}-\frac{7}{18}}
Convert 4 to fraction \frac{72}{18}.
150+\frac{1}{\frac{72-7}{18}}
Since \frac{72}{18} and \frac{7}{18} have the same denominator, subtract them by subtracting their numerators.
150+\frac{1}{\frac{65}{18}}
Subtract 7 from 72 to get 65.
150+1\times \frac{18}{65}
Divide 1 by \frac{65}{18} by multiplying 1 by the reciprocal of \frac{65}{18}.
150+\frac{18}{65}
Multiply 1 and \frac{18}{65} to get \frac{18}{65}.
\frac{9750}{65}+\frac{18}{65}
Convert 150 to fraction \frac{9750}{65}.
\frac{9750+18}{65}
Since \frac{9750}{65} and \frac{18}{65} have the same denominator, add them by adding their numerators.
\frac{9768}{65}
Add 9750 and 18 to get 9768.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}