Evaluate
14.04375
Factor
\frac{3 \cdot 7 \cdot 107}{5 \cdot 2 ^ {5}} = 14\frac{7}{160} = 14.04375
Quiz
Arithmetic
5 problems similar to:
15.8-( \frac{ 8 }{ 5 } + \frac{ 1 }{ 8 } \div \frac{ 4 }{ 5 } )
Share
Copied to clipboard
15.8-\left(\frac{8}{5}+\frac{1}{8}\times \frac{5}{4}\right)
Divide \frac{1}{8} by \frac{4}{5} by multiplying \frac{1}{8} by the reciprocal of \frac{4}{5}.
15.8-\left(\frac{8}{5}+\frac{1\times 5}{8\times 4}\right)
Multiply \frac{1}{8} times \frac{5}{4} by multiplying numerator times numerator and denominator times denominator.
15.8-\left(\frac{8}{5}+\frac{5}{32}\right)
Do the multiplications in the fraction \frac{1\times 5}{8\times 4}.
15.8-\left(\frac{256}{160}+\frac{25}{160}\right)
Least common multiple of 5 and 32 is 160. Convert \frac{8}{5} and \frac{5}{32} to fractions with denominator 160.
15.8-\frac{256+25}{160}
Since \frac{256}{160} and \frac{25}{160} have the same denominator, add them by adding their numerators.
15.8-\frac{281}{160}
Add 256 and 25 to get 281.
\frac{79}{5}-\frac{281}{160}
Convert decimal number 15.8 to fraction \frac{158}{10}. Reduce the fraction \frac{158}{10} to lowest terms by extracting and canceling out 2.
\frac{2528}{160}-\frac{281}{160}
Least common multiple of 5 and 160 is 160. Convert \frac{79}{5} and \frac{281}{160} to fractions with denominator 160.
\frac{2528-281}{160}
Since \frac{2528}{160} and \frac{281}{160} have the same denominator, subtract them by subtracting their numerators.
\frac{2247}{160}
Subtract 281 from 2528 to get 2247.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}