Solve for B
B=26
Share
Copied to clipboard
15.5=\frac{-3\times 7}{2}+B
Express -\frac{3}{2}\times 7 as a single fraction.
15.5=\frac{-21}{2}+B
Multiply -3 and 7 to get -21.
15.5=-\frac{21}{2}+B
Fraction \frac{-21}{2} can be rewritten as -\frac{21}{2} by extracting the negative sign.
-\frac{21}{2}+B=15.5
Swap sides so that all variable terms are on the left hand side.
B=15.5+\frac{21}{2}
Add \frac{21}{2} to both sides.
B=\frac{31}{2}+\frac{21}{2}
Convert decimal number 15.5 to fraction \frac{155}{10}. Reduce the fraction \frac{155}{10} to lowest terms by extracting and canceling out 5.
B=\frac{31+21}{2}
Since \frac{31}{2} and \frac{21}{2} have the same denominator, add them by adding their numerators.
B=\frac{52}{2}
Add 31 and 21 to get 52.
B=26
Divide 52 by 2 to get 26.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}