Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

15.3x^{2}-30x-470=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 15.3\left(-470\right)}}{2\times 15.3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 15.3 for a, -30 for b, and -470 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-30\right)±\sqrt{900-4\times 15.3\left(-470\right)}}{2\times 15.3}
Square -30.
x=\frac{-\left(-30\right)±\sqrt{900-61.2\left(-470\right)}}{2\times 15.3}
Multiply -4 times 15.3.
x=\frac{-\left(-30\right)±\sqrt{900+28764}}{2\times 15.3}
Multiply -61.2 times -470.
x=\frac{-\left(-30\right)±\sqrt{29664}}{2\times 15.3}
Add 900 to 28764.
x=\frac{-\left(-30\right)±12\sqrt{206}}{2\times 15.3}
Take the square root of 29664.
x=\frac{30±12\sqrt{206}}{2\times 15.3}
The opposite of -30 is 30.
x=\frac{30±12\sqrt{206}}{30.6}
Multiply 2 times 15.3.
x=\frac{12\sqrt{206}+30}{30.6}
Now solve the equation x=\frac{30±12\sqrt{206}}{30.6} when ± is plus. Add 30 to 12\sqrt{206}.
x=\frac{20\sqrt{206}+50}{51}
Divide 30+12\sqrt{206} by 30.6 by multiplying 30+12\sqrt{206} by the reciprocal of 30.6.
x=\frac{30-12\sqrt{206}}{30.6}
Now solve the equation x=\frac{30±12\sqrt{206}}{30.6} when ± is minus. Subtract 12\sqrt{206} from 30.
x=\frac{50-20\sqrt{206}}{51}
Divide 30-12\sqrt{206} by 30.6 by multiplying 30-12\sqrt{206} by the reciprocal of 30.6.
x=\frac{20\sqrt{206}+50}{51} x=\frac{50-20\sqrt{206}}{51}
The equation is now solved.
15.3x^{2}-30x-470=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
15.3x^{2}-30x-470-\left(-470\right)=-\left(-470\right)
Add 470 to both sides of the equation.
15.3x^{2}-30x=-\left(-470\right)
Subtracting -470 from itself leaves 0.
15.3x^{2}-30x=470
Subtract -470 from 0.
\frac{15.3x^{2}-30x}{15.3}=\frac{470}{15.3}
Divide both sides of the equation by 15.3, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{30}{15.3}\right)x=\frac{470}{15.3}
Dividing by 15.3 undoes the multiplication by 15.3.
x^{2}-\frac{100}{51}x=\frac{470}{15.3}
Divide -30 by 15.3 by multiplying -30 by the reciprocal of 15.3.
x^{2}-\frac{100}{51}x=\frac{4700}{153}
Divide 470 by 15.3 by multiplying 470 by the reciprocal of 15.3.
x^{2}-\frac{100}{51}x+\left(-\frac{50}{51}\right)^{2}=\frac{4700}{153}+\left(-\frac{50}{51}\right)^{2}
Divide -\frac{100}{51}, the coefficient of the x term, by 2 to get -\frac{50}{51}. Then add the square of -\frac{50}{51} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{100}{51}x+\frac{2500}{2601}=\frac{4700}{153}+\frac{2500}{2601}
Square -\frac{50}{51} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{100}{51}x+\frac{2500}{2601}=\frac{82400}{2601}
Add \frac{4700}{153} to \frac{2500}{2601} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{50}{51}\right)^{2}=\frac{82400}{2601}
Factor x^{2}-\frac{100}{51}x+\frac{2500}{2601}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{50}{51}\right)^{2}}=\sqrt{\frac{82400}{2601}}
Take the square root of both sides of the equation.
x-\frac{50}{51}=\frac{20\sqrt{206}}{51} x-\frac{50}{51}=-\frac{20\sqrt{206}}{51}
Simplify.
x=\frac{20\sqrt{206}+50}{51} x=\frac{50-20\sqrt{206}}{51}
Add \frac{50}{51} to both sides of the equation.